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Summary

The purpose of this thesis is to combine the theory of logarithmic forms with
geometric tools to deduce new results in Diophantine geometry. Let K be a
number field and let S be a finite set of places of K.

We first prove an effective Shafarevich theorem for elliptic curves. It gives
an effectively determinable Dedekind domain R ⊂ K and an effective con-
stant Ω, depending only on K and S, such that for each elliptic curve E
defined over K with good reduction outside S there is a globally minimal
Weierstrass model of E over Spec(R) with height bounded by Ω. This chap-
ter 1 is joint work with Professor Gisbert Wüstholz and Clemens Fuchs.

In chapter 2 we introduce a new method to generalize and improve the
results of the first chapter. Let C be an arbitrary hyperelliptic curve of genus
g ≥ 1 defined over K with good reduction outside S. We show that C has a
Weierstrass scheme over the ring of integers of K, arising from a hyperelliptic
equation for C with height effectively bounded in terms of g, S and K.
Then we give a new interpretation of this effective Shafarevich theorem for
hyperelliptic curves in terms of bad reduction which will be the main tool to
deduce the Diophantine applications of the last chapter.

In chapter 3 we generalize Szpiro’s famous Discriminant Conjecture for
elliptic curves over K to arbitrary hyperelliptic curves C over K and we give
an effective proof of an exponential version of the generalized conjecture.
Then we interpret these results in terms of Arakelov theory and we get also
some applications in the theory of geometric Mumford discriminants and
minimal regular models respectively. Furthermore, we generalize the Height
Conjecture of Frey for elliptic curves to general hyperelliptic curves over K
with a K-rational Weierstrass point and we prove an effective exponential
version of this generalized conjecture. As an application we get that the
elliptic Q-factors of modular Jacobian’s can be determined effectively.
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Zusammenfassung

Der Zweck dieser Arbeit ist, durch kombinieren von geometrischen Hilfs-
mitteln mit der Theorie der logarithmischen Formen, neue Resultate in der
Diophantischen Geometrie herzuleiten. Im folgenden sei K ein Zahlkörper
und S eine endliche Stellenmenge von K.

Im ersten Kapitel beweisen wir einen effektiven Satz von Shafarevich für
elliptische Kurven. Dieser gibt ein effektiv berechenbarer Dedekindring R ⊂
K und eine effektive Konstante Ω, welche nur von K und S abhängt, so
dass für jede über K definierte elliptische Kurve E mit guter Reduktion
ausserhalb von S ein global minimales Weierstrass model von E über Spec(R)
existiert, dessen Höhe durch Ω beschränkt ist. Dieses Kapitel 1 entstand in
Zusammenarbeit mit Professor Gisbert Wüstholz und Clemens Fuchs.

In Kapitel 2 führen wir eine neue Methode ein, um die Resultate von
Kapitel 1 zu verbessern und zu verallgemeinern. Sei C eine beliebige über
K definierte hyperelliptische Kurve mit Geschlecht g ≥ 1 und mit guter
Reduktion ausserhalb von S. Wir zeigen, dass C ein Weierstrass Schema
über dem Ganzheitsring von K besitzt, welches durch eine hyperelliptische
Gleichung definiert ist, so dass die absolute Weil Höhe der Koeffizienten der
Gleichung durch eine nur von g, S und K abhängigen effektiven Konstanten
beschränkt ist. Anschliessend geben wir eine neue Interpretation von einem
effektiven Satz von Shafarevich mittels schlechter Reduktion, welche dann
für die Diophantischen Anwendungen eine entscheidende Rolle spielen wird.

In Kapitel 3 verallgemeinern wir Szpiro’s berühmte Diskriminanten Ver-
mutung für elliptische Kurven auf beliebige hyperelliptische Kurven und wir
geben einen effektiven Beweis einer exponentiellen Variante dieser verall-
gemeinerten Vermutung. Danach interpretieren wir diese Resultate mittels
Arakelov Theorie, dann mit geometrischen Mumford Diskriminanten und
schliesslich mit minimalen regulären Modellen. Weiter verallgemeinern wir
die “Bounded Height”-Vermutung von Frey für elliptische Kurven auf allge-
meinere hyperelliptische Kurven C mit einem K-rationalen Weierstrasspunkt
und wir beweisen eine exponentielle effektive Variante dieser verallgemein-
erten Vermutung. Als Anwendung erhalten wir, dass die über Q definierten
elliptischen Faktoren von modularen Jakobi Varietäten effektiv bestimmt
werden können.
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0 Introduction

In 1966 Baker stated his groundbreaking effective lower bounds for linear
forms in logarithms of algebraic numbers (see [4]) which had striking Dio-
phantine applications. The main goal of this thesis is now to combine the
theory of logarithmic forms with geometric tools to deduce new results in
Diophantine geometry.

We first consider a result obtained by Baker himself. In [5] he gave an
upper bound for the absolute value of the integer solutions (x, y) ∈ Z2 of
hyperelliptic equations Y 2 = f(X) with integer coefficients. For given f his
bound allowed to find in principal all the solutions. Based on the theory of
logarithmic forms, Bugeaud (see [13]) deduced in 1997 upper bounds for the
absolute height of the S-integral solutions of superelliptic equations defined
over the ring of integers OK , where K is a number field and S is a finite
set of places of K. In the proof he reduced the problem to solve effectively
S-unit equations.

This is the starting point of the thesis. We apply these results of Bugeaud
to solve effectively a “Moduli problem”, i.e. to parametrize certain geometri-
cal objects by integral points on curves. It has already been known for some
time that effective results on the Mordell equation would lead to an effective
version of a theorem due to Shafarevich for elliptic curves over arbitrary num-
ber fields. The classical qualitative theorem says that there are only finitely
many K-isomorphism classes of elliptic curves with good reduction outside
S. An effective version amounts to the statement that for every elliptic curve
E over K with good reduction outside S, one can find a K-isomorphic elliptic
curve defined by an equation having coefficients with height bounded by an
effective constant.

The proof of this statement first uses the fact that one can associate to
each elliptic curve E an equation Y 2Z = X3 + a4XZ

2 + a6Z
3 with discrimi-

nant ∆ which has a minimality property. Here an important conceptual point
is that the elliptic curve is understood as a purely geometric object defined to
be a smooth, projective, connected curve of genus one over Spec(K) together
with a section in E(K). We obtain an equation ∆ = −16(27a2

6 + 4a3
4) to

which results of the theory of logarithmic forms can be applied to get effec-
tive bounds for (a4, a6) ∈ O2

S, where OS denotes the ring of S-integers in K.
In chapter 1 this leads to a first effective version of Shafarevich’s theorem for
elliptic curves over K. More precisely, it says that for given K and S there is
an affine Dedekind scheme Spec(R) of dimension one with 2, 3 invertible in
R and an effective constant Ω with the following properties. If E is an elliptic
curve over K with good reduction outside S, then there is a globally minimal
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Weierstrass modelW of E over Spec(R) that is given by an equation in short
Weierstrass form with coefficients having absolute height at most Ω.

This improves and generalizes for example results of Coates [15], Poulakis
[53, 54], Brumer and Silverman [12]. We mention that this first chapter is
joint work with Professor Gisbert Wüstholz and Clemens Fuchs.

In chapter 2 we introduce a new method in order to generalize and im-
prove the results of chapter 1. For given K, S and g ≥ 1 we show that there
exist an effective constant Ω0 and an effectively constructable set of places
T ⊇ S of K with the following properties. If C is a hyperelliptic curve over
K of genus g with good reduction outside S, then there exists a globally T -
minimal Weierstrass schemeW(f) of C overOK . It arises from a hyperelliptic
equation

Y 2 = f(X), with discriminant ∆ ∈ O×T ∩ OK ,
such that the absolute logarithmic Weil heights of the coefficients of f ∈
OK [X] are at most Ω0. From this we deduce for example a completely ef-
fective Shafarevich theorem for hyperelliptic curves which generalizes and
improves the results of chapter 1 and of Coates [15]. We also discuss an other
application which leads into the direction of an effective Mordell Conjecture.

For the proof we need a new approach, since the one of chapter 1 does not
extend to deal with the more general case of arbitrary hyperelliptic curves
over K. In the case where the curve has a K-rational Weierstrass point we
use geometry to reduce the problem to solve effectively some unit equations
which then leads to explicit bounds. In view of the actual state of the art
in the theory of logarithmic forms (see Baker and Wüstholz [8] or [7]) the
shape of these bounds is best possible. In the remaining case we use that the
moduli spaces of binary forms and hyperelliptic curves are isomorphic and
then we apply effective results for binary forms with given discriminant. We
point out that the above mentioned effective resolution of unit equations (see
Győry and Yu [29]) and the effective results for binary forms (see Evertse
and Győry [22]) are both based on the theory of logarithmic forms.

We also note that our method of proof can be exhausted to deal with the
corresponding problem for some more general curves. Moreover, in course of
our proofs we established some completely explicit estimates for monic poly-
nomials which improve the actual best effective results (compare with [26]
and the references in [9] and [27]).

In the remaining part of this thesis we deduce from the results obtained in
chapter 2 some Diophantine applications. Here the basic ingredient is a new
interpretation of the effective Shafarevich theorem for hyperelliptic curves in
terms of bad reduction. Inter alia we shall prove effective exponential versions
of the following two famous conjectures. We mention that both conjectures
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are equivalent to the celebrated abc-Conjecture of Masser and Oesterlé [41]
and to state them we let ∆E and NE be the minimal discriminant and the
conductor of an elliptic curve E over Q respectively.

Conjecture 0.1 (Szpiro’s Discriminant Conjecture [70]). There exist abso-
lute constants c, κ such that if E is an elliptic curve defined over Q then

∆E ≤ cNκ
E.

Let hrel(E) be the relative Faltings height of E. We now state a conjecture
of Frey.

Conjecture 0.2 (Frey’s Height Conjecture [25]). There exist absolute con-
stants c, κ such that if E is an elliptic curve defined over Q then

hrel(E) ≤ κ logNE + c.

We start in chapter 3 with a generalization of Szpiro’s Discriminant Con-
jecture to arbitrary hyperelliptic curves C over K and then we prove an
effective exponential version of the generalized conjecture. This has several
consequences in Diophantine geometry. On using results of Szpiro [72] and
Ullmo [73] we deduce an effective upper bound for the Arakelov degree of
an elliptic curve over K in terms of its conductor. Next we combine results
of Bloch [10], Deligne [19], Liu [36], Mumford [47] and Saito [57] with our
theorem. If C is an elliptic curve or a smooth, projective and geometrically
connected curve of genus 2 over K, then we derive an effective estimate for
the geometric discriminant of C in terms of the conductor of the Jacobian of
C. The same upper bound holds then also for the global number of singular
points on the geometric special fibers of a minimal regular model of C over
the ring of integers in K.

In the next subsection we first introduce quasi-minimal Weierstrass
schemes of a hyperelliptic curve C over K which has a K-rational Weier-
strass point. Then we generalize the Height Conjecture in terms of quasi-
minimal Weierstrass schemes to the more general curves C and we give an
effective proof of an exponential version of this generalized conjecture. As an
application we get that the elliptic Q-factors of modular Jacobian’s can be
determined effectively.

All results described in course of this introduction are new in the stated
generality and starting with the crucial new interpretation in chapter 2 they
are new even for elliptic curves defined over Q.

We conclude this introduction by an outlook on some further applications
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of our method which are not included in this thesis. In [75] we get from our
exponential version of the Height Conjecture new interpretations of numer-
ous results (for example Masser-Wüstholz [42],[43], Raynaud [55], Silverman
[65]) for elliptic curves E over K in terms of reductions. This has the follow-
ing applications. We answer precisely an old question, posed by Serre in 1981
(see [59, Question 3, p. 399]), on the surjectivity of Galois representations
on division fields of E, we give an effective result which is related to the
criterion of Néron-Tate-Shafarevich, and we determine effectively the elliptic
K-quotients of modular Jacobians J0(N), J1(N) in terms of N .

In [74] we deduce an exponential version of the Modular Degree Conjec-
ture (see [25]). Suppose that E is defined over Q and let X0(N) be the usual
modular curve over Q of level N = NE. We prove that there is a non-constant
Q-morphism φE : X0(N) → E with degree bounded exponentially in terms
of N . This then leads to general estimates for congruence primes in terms of
their level.

Moreover, we derive a geometric, and therefore intrinsic version of Baker’s
effective theorem [3, 5] on integral solutions to (hyper)elliptic equations
defined over K. It bounds effectively integral points (outside a canonical
horizontal divisor) on the minimal regular model over Spec(OK) of a (hy-
per)elliptic curve. For instance this gives a completely effective version of
Lang’s conjecture on the number of integral solutions to quasi-minimal el-
liptic equations (see Hindry-Silverman’s quantitative result [30]). This geo-
metric version has a very explicit application in the theory of Diophantine
equations. It leads to an effective upper bound for the absolute value of the
integer solutions to elliptic equations that depends only on the discriminant
and on the degree, but not on the height of the equation. This is surpris-
ing, since the discriminant of a separable polynomial can be arbitrarily small
compared to its height.

For arbitrary number fields K our method establishes the equivalence be-
tween the abc-Conjecture [41] and Frey’s Height Conjecture [25] and it shows
that any of these conjectures implies Szpiro’s Discriminant Conjecture [70].
This is interesting, since it seems that the classical links between these Con-
jectures over Q (through Frey curves) do not extend all to arbitrary number
fields. As an application we get that the abc-Conjecture implies for all num-
ber fields of degree at most d and with discriminant of absolute value at
most dd that the cardinality of the K-torsion points of any elliptic curve E
over K is bounded polynomially in terms of d. The actual best bounds are
exponential in d.

Finally, we remark that it seems possible, up to minor problems only of
technical nature, to use our method to generalize straight forward many of
the above results obtained for abelian varieties of dimension 1 and hyperel-
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liptic curves to abelian surfaces or hyperelliptic Jacobian’s and superelliptic
curves respectively.
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1 An effective Shafarevich theorem for ellip-

tic curves

This chapter is joint work with Professor Gisbert Wüstholz and Clemens
Fuchs, where the results were obtained in the Bachelor- and Master thesis
of the author supervised by them. We mention that a theorem of chapter 2
generalize and improve the results given here. Moreover, the method intro-
duced in chapter 2 is more powerful and it is, in particular in the case of
elliptic curves, crucial for the theoretical applications obtained at the end
of this thesis. On the other hand the method used in this chapter is from a
computational point of view still of great interest, since it depends directly
on the effective resolution of the Mordell equation.

1.1 Introduction

Let K be a number field and let S be a finite subset of the set of places of
K containing the infinite places. In 1963 Shafarevich [62] proved that there
are only finitely many K-isomorphism classes of elliptic curves defined over
K with good reduction outside S (this statement is known as Shafarevich’s
theorem). In 1970 Coates [15] got for the special case K = Q and 2, 3 ∈ S an
effective constant Ω such that in each Q-isomorphism class of elliptic curves
defined over Q with good reduction at the rational primes not in S there is
an elliptic curve

E : Y 2 = 4X3 − g2X − g3, g2, g3 ∈ Z,

with max(|g2| , |g3|) ≤ Ω. For the proof he considered the Mordell equation

V 2 = U3 + r, r ∈ Z \ {0},

and used the reduction theory of binary forms to get an explicit upper bound
for the absolute value of the solutions (u, v) of the Mordell equation in Z2.
This led to an upper bound for the absolute value of the coefficients g2, g3

which provided the first effective proof of Shafarevich’s theorem. In the same
setting Brumer and Silverman [12] deduced in 1996 an upper bound for the
number N of Q-isomorphism classes of elliptic curves defined over Q with
good reduction outside S. They applied an estimate obtained by Evertse
and Silverman [23]. Later in 1999 this upper bound for N was improved by
Poulakis [53, 54]. He used an estimate for the number of solutions of the unit
equation x+ y = 1 obtained in [21] to establish his explicit upper bound for
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N . After Baker stated in [4] his groundbreaking effective lower bounds for
linear forms in logarithms of algebraic numbers the existence of an effective
proof of the general Shafarevich theorem for arbitrary number fields became
well-known. Ideas for such an effective proof can be found for example in
Masser and Wüstholz [42], Holzapfel [32] and Serre [60, 61]. For the sake
of completeness we also refer to a paper of Cremona and Lingham from
2007 (see [16]) in which an algorithm to determine the classes in question is
described.

An elliptic curve E over K can be defined as the solution set in P2(C)
of a homogeneous equation with coefficients in K. However in view of Sha-
farevich’s theorem this point of view is somewhat unnatural since there are
different defining equations for the same curve and to deal with this is a
crucial point in the theorem. Therefore we shall consider an elliptic curve
as a geometric object in this chapter. The precise definition and also the
notions Weierstrass model and good reduction will be introduced in section
1.2 below.

The main goal of this chapter is then to establish, for given K and S, the
existence of an effectively computable affine Dedekind scheme Spec(R) with
quotient field K and 2, 3 ∈ R× and an effective constant Ω depending only on
quantities (specified in section 1.3) given by K and S such that the following
holds: For each elliptic curve E defined over K with good reduction outside
S there exists a globally minimal Weierstrass model W of E over Spec(R)
which is smooth. Furthermore, the Weierstrass scheme structure of W over
Spec(R) admits an equation which can be associated to E and which takes
the form

W : Y 2Z = X3 + a4XZ
2 + a6Z

3

with a4, a6 ∈ R such that

max(h(a4), h(a6)) ≤ Ω;

here h is the absolute logarithmic Weil height of K which will be defined in
section 1.3. We immediately get extensions of the previously mentioned re-
sults of Coates, Evertse, Brumer, Silverman and Poulakis to arbitrary number
fields K. Our result improves in the case K = Q parts of the known results
and it provides a new effective proof of Shafarevich’s theorem.

The plan of the remaining of chapter 1 is as follows: We start in section
1.2 with the precise definition of an elliptic curve in geometric terms, then we
define Weierstrass models and their properties and finally we explain what
good reduction means. In section 1.3 we introduce the absolute height, state
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the main theorem, give corollaries and discuss how they improve and gen-
eralize the known results. Then in section 1.4 we slightly extend the result
of Bugeaud [13, Theorem 1], we prove two lemmas from algebraic number
theory and a lemma from geometry which provides the existence of a Weier-
strass model of an elliptic curve with some special properties. The proof of
the main theorem is given in section 1.5. We start by constructing R, then ap-
ply the geometric lemma from which we obtain a Weierstrass model W over
Spec(R) for each elliptic curve E defined over K with good reduction outside
S. The defining equation forW can be chosen in short Weierstrass form with
coefficients a4, a6 ∈ R such that the discriminant ∆ = −16(4a3

4 + 27a2
6) ∈ R×

of the Weierstrass equation has a minimality property. We transform the
equation for the discriminant into a Mordell equation with coefficients in OK
and apply an effective result which provides bounds for the height of the
S-integral solutions. Some further estimates assure that the bounds depend
only on quantities given by K and S. In section 1.6 we prove the corollaries
to the main theorem. We show that one can get a Weierstrass model of E
over Spec(OK) with globally controlled reduction. Furthermore, the results
are discussed in the special cases when OS is a principal ideal domain and
when K = Q.

1.2 Geometric preliminaries

In this section we define an elliptic curve in a geometric way, we define and
discuss Weierstrass models and explain the term good reduction.

An elliptic curve (E,O) over a number field K is a smooth, projective
and connected curve E of genus one over Spec(K) together with a section
O ∈ E(K). Unless stated otherwise we identify the pair (E,O) with the
Spec(K)-scheme E and we say that two elliptic curves are K-isomorphic
if they are isomorphic in the category of schemes over Spec(K). We can
associate to E (see [18]) a Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, ai ∈ K, (1)

such that E is K-isomorphic to the closed subscheme of the projective plane
P2
K = Proj(K[X, Y, Z]) given by (1).

Let R ⊂ K be a Dedekind domain with fraction field K and

W = Proj(R[X, Y, Z]/(F ))

where F = Y 2Z + a1XY Z + a3Y Z
2 − X3 − a2X

2Z − a4XZ
2 − a6Z

3 and
has coefficients in R. The pair (W , f) with f a K-isomorphism from the
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generic fiber W ×Spec(R) Spec(K) to E is called a Weierstrass model of E
over Spec(R) and we take the discriminant of the Weierstrass equation F = 0
as its discriminant ∆W . For simplicity we suppress f and use W instead of
(W , f).

Let p be a non-zero prime ideal of R and Rp the local ring of R at p. We
say that the modelW is minimal at p if the order of p in ∆W is minimal when
taken over all Weierstrass models of E over Spec(Rp). A minimal Weierstrass
model at p always exists. The Weierstrass model W is globally minimal if it
is minimal at each non-zero prime of R. The existence of a globally minimal
Weierstrass model depends on R.

The elliptic curve E over K has good reduction at p if and only if there
exists a smooth Weierstrass model of E over Spec(Rp) and it has good re-
duction outside a subset S of Spec(R) if it has good reduction at all p not in
S.

1.3 Statement of the results

Let K be a number field of degree d and with ring of integers OK , let MK

be the set of places of K, MK,fin the set of finite places and MK,∞ the set
of the infinite places of K. Instead of v ∈ MK,∞ we also write v | ∞ and
there is a natural bijection between the set of finite places and prime ideals
in OK given by v 7→ pv and p 7→ vp. The infinite places v | ∞ correspond to

embeddings σ : K ↪→ C and give absolute values |α|v = |σ(α)|dv with dv = 1
if v corresponds to a real embedding and dv = 2 if the embedding is not real.
The norm of an ideal a 6= 0 in OK is defined as NK/Q(a) = |OK/a| and for
α ∈ K and p ∈ Spec(OK) we let ordp(α) be the order of p in the principal
ideal (α) defined by α and we put ordv(α) = ordpv(α). The places v ∈MK,fin

define absolute values |α|v on K if we put |α|v = NK/Q(pv)
−ordv(α) for α 6= 0

and |0|v = 0.

We use absolute values to define the height of a vector (α1, . . . , αn) ∈ Kn

as

HK(α1, . . . , αn) =
∏
v∈MK

max(1, |α1|v , . . . , |αn|v).

It is customary to use also the absolute height H which is independent of K
and satisfies HK = Hd. The case n = 1 includes also the definition of the
absolute height H(α) of α ∈ K. Very often we use the absolute logarithmic
height h = logH. The height function satisfies H(α + β) ≤ 2H(α)H(β)
and H(αβ) ≤ H(α)H(β) for α, β ∈ K. The height of a monic polynomial
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f(X) = Xn + β1X
n−1 + · · · + βn ∈ K[X] is H(f) = H(β1, . . . , βn). Let E

be an elliptic curve over K and W a Weierstrass model of E over Spec(R)
given by F = 0. We define the height H(W) of the model as the height of
the coefficient vector of F .

Let S be a finite set of places of K, let s be the number of finite places
in S, let p1, . . . , ps be the prime ideals of OK corresponding to the finite
places in S and for 1 ≤ i ≤ s let pi ∈ N be defined as piZ = pi ∩ Z. Then
we put p = max(3, p1, . . . , ps) where we have included 3 to make sure that
log log p > 0. We denote by OS the ring of S-integers and by O×S the group
of units of OS. Observe that by Dirichlet’s unit theorem (see [11, Theorem
1.5.13]) O×S is finitely generated and has rank |S| − 1.

We denote by DK the discriminant and by hK the class number of K. In
the sequel Ω1,Ω2, . . . ,Ω5 are effectively computable real positive constants
depending just on d.

Main Theorem. There exists an effectively computable set of places T of K
containing S such that if E is an elliptic curve over K with good reduction
outside S, then there exists a globally minimal Weierstrass model W of E
over Spec(OT ) which is smooth and satisfies

h(W) ≤ exp(exp(Ω1(s+ hK log |DK |+ log log p)2)).

There are various ways to attach a height to an elliptic curve. One pos-
sibility is to follow Silverman [64] and to define

h(E) =
1

12
inf h(a3, b2)

with the infimum taken over all a, b ∈ K such that there is Weierstrass
model of E over Spec(K) given by Y 2Z = X3 +aXZ2 + bZ3. Another height
has been introduced by Faltings and this height does not use models in its
definition. Each of the heights has special features and each of them has some
disadvantage inherent. They can be compared asymptotically and both can
be expressed in terms of the height h(j(E)) of the value of the j-function at
E up to a weight factor 1/12 and the unstable discriminant (compare [63]).
Our theorem shows then that for every elliptic curve E defined over K with
good reduction outside S any of the heights is bounded.

The set T in the main theorem will be effectively constructed with the
properties that it contains MK,∞, that 2, 3 are invertible in OT and that OT
is a principal ideal domain.
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We briefly discuss the basic ingredients for the proof of the main theo-
rem. The existence of a globally minimal Weierstrass model will follow from
Lemma 1.7 even with the extra information that the model is given by a
short Weierstrass equation and that it is smooth over Spec(OT ). Here we
need that T contains S, that OT is a principal ideal domain and that 2, 3 are
invertible in OT . The discriminant ∆W takes the form

− 27a2
6 = 4a3

4 +
1

16
∆W (2)

with ∆W ∈ O×T and using an improved version of a result of Bugeaud [13]
given in Proposition 1.4 we shall effectively bound the integral solutions a4

and a6 of the discriminant equation in terms of K and T . For the height
bound in the theorem we use that T is effective in terms of S. The proposition
requires that the coefficients of the equation in (2) are in OK which is not the
case in general. It can be achieved however in a controlled way by suitable
transformations of the equation.

A natural question is whether there exists a globally minimal Weierstrass
model of E over Spec(OK) with height bounded as in the main theorem.
The obstruction comes from the class group of OK . It is known that for
every elliptic curve E → Spec(K) there exists a globally minimal Weierstrass
model over Spec(OK) if and only if hK = 1 (see [66, Corollary 8.3]). By a
suitable transformation of the Weierstrass model over Spec(OT ) given in the
main theorem we construct a Weierstrass model over Spec(OK), in general
not globally minimal anymore, and this establishes an extension to arbitrary
number fields K of the result of Coates.

Corollary 1.1 (Model over Spec(OK)). There exists an effectively com-
putable set of places T of K containing S such that if E is an elliptic curve
over K with good reduction outside S, then there exists a Weierstrass model
W of E over Spec(OK) which is smooth over Spec(OT ) and satisfies

h(W) ≤ exp(exp(Ω2(s+ hK log |DK |+ log log p)2)).

For the smoothness it is needed that the set T has the additional property
that all rational primes ` that divide the norm of pv for some v ∈ T are
invertible in OT .

In the special case when OS is a principal ideal domain our bounds can
be improved.

Corollary 1.2. There exists an effectively computable set of places T of K
containing S such that if E is an elliptic curve over K with good reduction

11



outside S, then there exists a globally minimal Weierstrass model W of E
over Spec(OT ) and a Weierstrass model W ′ of E over Spec(OK) which both
are smooth over Spec(OT ) such that their logarithmic heights are bounded by

exp(Ω
(s+1)2

3 |DK |d+2 (log p)d(s+2)).

When K = Q we can do slightly better. The double exponentiation gets
reduced to a single one. Let S be a finite set of rational primes. We put
s = |S| and p = maxS ∪ {3}.

Corollary 1.3 (Effective Shafarevich theorem over the rationals). Let E be
an elliptic curve over Q with good reduction outside S. There exists a globally
minimal Weierstrass model W over Spec(OS[1/6]) and a Weierstrass model
W ′ of E over Spec(Z) which both are smooth over Spec(OS[1/6]) such that
their heights satisfy

max(H(W), H(W ′)) ≤ exp(Ω
(s+1)2

4 p103(s+3)).

Coates showed in [15] that in each Q-isomorphism class of elliptic curves
with good reduction outside S there exists an elliptic curve defined by an
equation in short Weierstrass form with coefficients g2, g3 ∈ Z such that

max(|g2| , |g3|) ≤ exp(2107(s+1)4

p109(s+1)3

).

The bound in Corollary 1.3 is asymptotically better with respect to the pa-
rameters s and p than the bound obtained by Coates.

From our bounds for the heights it is easy to deduce that all K-isomor-
phism classes of elliptic curves over K with good reduction outside S can
be determined effectively and estimates for their number N(K,S) can be
given. This leads to bounds which are not as good as the results published
by Evertse, Brumer, Silverman and Poulakis in the case K = Q. For example
the bound for the number of isomorphism classes becomes

N(Q, S) ≤ exp(Ω
(s+1)2

5 p103(s+3))

when K = Q. In this special case the bound obtained by Poulakis in [53, 54]
by a different method is sharper and fully explicit.
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1.4 Auxiliary results

In this section we give some results which we need for the proof of the main
theorem. Let T be a finite set of places of K. One of the main tools used in
the proof is an effective upper bound for the height of the solutions in OT
of a hyperelliptic equation over OK . This upper bound will be established
at the beginning of this section. After that we prove two technical lemmas,
where the second gives an effective construction of a finite subset of MK,fin

such that OT is a principal ideal domain if T contains this set. At the end of
the section we prove a geometric lemma which provides a specific model for
an elliptic curve with good reduction outside S.

The following proposition is an extension of a result of Bugeaud [13,
Theorem 1]. He assumes, and for simplicity we also do, that T contains the
archimedean places of K. We denote by t and q the quantities associated to
T that correspond to s and p which we have associated to S.

Proposition 1.4. Let a 6= 0 be an element in OK and let g be a monic
separable polynomial over OK with discriminant ∆g and degree n ≥ 3. We
set A = max(

∣∣NK/Q(a)
∣∣ , 3) and H = max(H(g), 27). Then the solutions

(x, y) ∈ OT ×K of the equation aY 2 = g(X) satisfy

H(x) ≤ H2 eλ

with λ = λ1λ2λ3 and

λ1 = C
(t+1)2

1 q4n3d(log q)4n2dt,

λ2 = |DK |15n2/2A3n2 ∣∣NK/Q(∆g)
∣∣12n

,

λ3 = (log
∣∣ADKNK/Q(∆g)

∣∣)6n2d log logH.

The constant C1 is effective and depends only on d and n.

Proof. Since all conditions of [13, Theorem 1] are satisfied, we get the upper
bound with an effective constant depending only on d, n and t as stated. We
now follow the proof given in [13] to get in addition an explicit dependence
of the constants on the parameter t. By k1, . . . , k46 we shall denote effective
constants depending on d and n but not on t. In our proof we keep the
notation introduced in [13].

In a first step we work out the dependence on t of the constant c12 in [13,
Lemma 4]. Following the proof and using the same arguments as in the proof
of the main theorem of [14] one sees that the constants c13 up to c20 can
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be replaced by exp(k13(t+ 1)2) up to exp(k20(t+ 1)2) and c21 up to c24 by
k21(t+1) up to k24(t+1) respectively. This implies that c25 can be replaced by
exp(k25(t+ 1)2) and finally c12 by exp(k12(t+ 1)2). Since the constants in the
remaining lemmas and propositions are given explicitly or are independent
of t, we are now ready to work out also the dependence of c1 in terms of t.

We begin with replacing c33 up to c35 by k33 up to k35 and we change c36

and c37 into k36(t + 1) and k37(t + 1) respectively. Further we take k38, k39

as c38, c39 and exp(k40(t+ 1)) for c40. Using the term which replaces c12 we
see that c41 can be substituted by exp(k41(t+ 1)2) and then we can take c42

for k42(t + 1) and exp(k43(t+ 1)2) up to exp(k46(t+ 1)2) for c43 up to c46

respectively. We conclude that c1 can be substituted by exp(k1(t+ 1)2) and
the statement follows with C1 = k1.

We remark that by the above arguments we have, more generally, that the
effective constant of the first bound of Bugeaud [13, Theorem 1], depending
on d, n and t, is at most exp((t+1)2 logC1), where C1 is the effective constant
of the above proposition that depends only on d and n.

Let v ∈ MK,fin and pv be the positive generator of pv ∩ Z. The following
lemma provides a tool to remove denominators so as to construct models
over Spec(OK) from models which are defined only over an open subset.

Lemma 1.5. For a in OT we define the rational integer

δ(a) :=
∏

v∈T,v-∞
|a|v>1

|a|v.

Then δ(a)a ∈ OK.

Proof. We take w -∞ and verify |δ(a)a|w ≤ 1. For w /∈ T we have |δ(a)|w ≤ 1
and |a|w ≤ 1 and therefore the assertion. If w ∈ T and |a|w ≤ 1, then again
|δ(a)|w ≤ 1 and so the assertion follows again. Finally, if w ∈ T and |a|w > 1,
then

|δ(a)|w =
∏

v∈T,pv=pw
|a|v>1

| |a|v|w ≤ | |a|w|w ≤ |a|−1
w .

This concludes the proof.

We notice that the statement of the lemma would also follow from [11,
Proposition 1.6.6] where with extra effort an additional property is proved.

The next lemma allows us to remove class group obstructions in connec-
tion with globally minimal models.
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Lemma 1.6. There exists a set of at most hK log(|DK |) finite places v with

pv bounded by |DK |1/2 such that OT for T ⊂MK is a principal ideal domain
if T contains the set.

Proof. By [34, Theorem 4, p. 119] we can choose for each class in the class
group of K an integral representative a with the property that

NK/Q(a) ≤ |DK |1/2

and from this we conclude that at most log(|DK |)/(2 log(2)) prime ideals
divide a. On taking the sum over the class group shows that this gives at
most hK log(|DK |)/(2 log(2)) prime ideals. Their classes generate the class
group. Let P ⊂ N be the set of rational primes corresponding to these prime
ideals. We define T0 as the set of v in MK,fin such that ` divides the norm of
pv for some ` ∈ P and we see that

|T0| ≤ dhK log(|DK |)

and that the largest rational prime in P is at most |DK |1/2. In the ring OT
for T ⊇ T0 as in the lemma, ideals corresponding to elements in T0 become
trivial. Their image in the class group of OT generate the group and this
shows that the class group is trivial.

We choose a fundamental system U of T -units and a generator ζ of the
torsion subgroup of O×T and we say that ∆ ∈ O×T is reduced if it takes the
form ∆ = ζm

∏
ε∈U ε

n(ε) with 0 ≤ m,n(ε) ≤ 11. For our geometric lemma
below we assume that T contains S, that OT is a principal ideal domain and
that 2, 3 are invertible in OT .

Lemma 1.7. Let E be an elliptic curve over K with good reduction outside S.
There exists a globally minimal Weierstrass model of E over Spec(OT ) given
by an equation of the form Y 2Z = X3 + a4XZ

2 + a6Z
3 with discriminant

reduced and in O×T .

Proof. By assumption the Picard group of Spec(OT ) is trivial and then [38,
Theorem 9.4.35] provides a globally minimal Weierstrass model W of E
over Spec(OT ). We choose F ∈ OT [X, Y, Z] such that W = Proj(OT [X, Y,
Z]/(F )). For v ∈ MK,fin we take p = pv ∈ Spec(OT ) and Wp = W ×OT

Spec(OT,p). SinceW is minimal its localizationWp stays minimal. The ellip-
tic curve E has good reduction outside S and since S ⊆ T it follows that E
has the same property with respect to T . Therefore the fiber Wp(p) of Wp
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at p is smooth for all p not in T and from [38, Corollary 10.1.23] we deduce
that ∆W ∈

⋂
p∈Spec(OT )O

×
T,p = O×T .

By assumption 6 is in O×T and this implies that there exists a Weierstrass
model W ′ over Spec(OT ) with defining equation Y 2Z = X3 + a′4XZ

2 + a′6Z
3

such that the discriminants ∆W and ∆W ′ coincide up to a T -unit. This shows
that W ′ is another globally minimal Weierstrass model of E over Spec(OT ).
We write its discriminant as

∆W ′ = ζm
′∏
ε∈U

εn
′(ε)

with U the fundamental system of T -units and ζ the root of unity introduced
above. Reduction modulo 12 gives

∆W ′ = u12ζm
∏
ε∈U

εn(ε)

for some u ∈ O×T and with 0 ≤ m,n(ε) ≤ 11. The same arguments as above
show that the Weierstrass model defined by Y 2Z = X3 +a4XZ

2 +a6Z
3 with

a4 = u−4a′4, a6 = u−6a′6 is a globally minimal Weierstrass model of E over
Spec(OT ) and has discriminant u−12∆W ′ which is reduced and in O×T .

Observe that even if OK is a principal ideal domain, it is a priori not
possible to associate to E an equation with coefficients in OK and with
reduced discriminant as the following example shows. Let K = Q, S = {2, 3}
and E be the elliptic curve defined by the equation

Y 2Z = X3 − 4XZ2 +
8

3
Z3. (3)

The Weierstrass model W of E over Spec(OS) given by (3) has discriminant
∆W = 210 which is reduced. The equation Y 2Z = X3 − 324XZ2 + 1944Z3

gives a Weierstrass model of E over Spec(Z) and its discriminant is 210312

which is not reduced anymore. In conclusion E has no Weierstrass model
over Spec(Z) with reduced discriminant.

We need that ∆W is reduced to get a bound for its height in terms of S
and K. If an effective Szpiro conjecture on the minimal discriminant of an
elliptic curve [71] would be true, the reduction would be obsolete in the case
when OK is a principal ideal domain.

As a conclusion we see that, even if K = Q, we have to consider solutions
a4, a6 of (2) inOT and not only inOK . This shows that the results of Baker on
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the effective resolution of the hyperelliptic equation [3, 5], or more specifically
on the Mordell equation [1, 2], are not sufficient to deal with the problem.

With these results we are now ready to prove the main theorem and this
will be done in the next section.

1.5 Proof of the main theorem

Let K and S be as in the main theorem. The constants C2, C3, . . . which
will be introduced in the proof depend only on the degree d of K and can be
computed effectively. For T we take the union of the set of places constructed
in Lemma 1.6, the sets S and MK,∞, and the set of places corresponding to
prime divisors of 6. The set T is effectively computable and we have to
compare the number s and the prime p in the main theorem associated to S
with the corresponding quantities t and q for T . Using the bound in Lemma
1.6 we get

t ≤ ds+ dhK log(|DK |) + 2d and q ≤ p |DK |1/2 . (4)

We take now an elliptic curve E over K with good reduction outside
S and conclude, since T contains S, that our curve E has good reduction
outside T . As in [14, Lemma 1] we choose a fundamental system U of T -units
such that

h(ε) ≤ C
(t+1)2

2 RT (5)

for all ε ∈ U and we fix a generator ζ of the torsion subgroup of K×.

Our Lemma 1.7 gives a globally minimal Weierstrass model W of E over
Spec(OT ) with equation Y 2Z = X3 + a4XZ

2 + a6Z
3 and coefficients a4, a6

in OT such that ∆ = ∆W is reduced. We multiply the equation (2) with 16
and then (4a4, 4a6) ∈ OT ×OT is a solution of

− 27Y 2 = X3 + ∆. (6)

From Lemma 1.5 we see that α = δ(∆)∆ ∈ OK and clearly δ(∆) is bounded
by HK(∆) = H(∆)d. Then x = −4δ(∆)2a4, y = 12δ(∆)3a6 is a solution of
the equation 3Y 2 = X3 − δ(∆)5α. The polynomial g(X) = X3 − δ(∆)5α
is separable and therefore an application of Proposition 1.4 to 3Y 2 = g(X)
gives

H(x) ≤ H(g)2 eλ (7)

with λ = λ1λ2λ3 (for the definition of the quantities λ1, λ2, λ3 see Proposition
1.4).
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Since the degree of g is 3 we get

λ1 ≤ C
(t+1)2

3 q108d(log q)36dt (8)

and for estimating λ2 and λ3 we need bounds for
∣∣NK/Q(∆g)

∣∣, H(g) and A.
In a first step we estimate H(∆) and δ(∆) and in a second step the estimates
are used to derive upper bounds for

∣∣NK/Q(∆g)
∣∣, H(g) and A. In a third step

we deduce the upper bounds for λ2 and λ3 as stated.

To give an estimate for H(∆) we bound from above the T -regulator RT

(defined in [13]). From [13, Lemma 3] we get RT ≤ RKhK(d log q)t and

from [35] we see that RKhK is at most (10d)10d |DK |1/2 (log |DK |)d−1 which
combines to

RT ≤ C4 |DK |1/2 (log |DK |)d−1(d log q)t.

The discriminant ∆ is reduced and this means that

∆ = ζm
∏
ε∈U

εn(ε)

for integers 0 ≤ m,n(ε) < 12. Height properties together with (5) and the
upper bound for RT lead to

H(∆) ≤ exp(C
(t+1)2

5 |DK |1/2 (log |DK |)d−1(log q)t)

and we conclude that

δ(∆) ≤ exp(C
(t+1)2

6 |DK |1/2 (log |DK |)d−1(log q)t). (9)

The absolute value of the norm from K to Q of ∆g = −27(δ(∆)5α)2 is at
most equal to H(∆g)

d and can be estimated by C7H(δ(∆)5α)2d. We recall
that α = δ(∆)∆ and therefore

H(α) ≤ exp(C
(t+1)2

8 |DK |1/2 (log |DK |)d−1(log q)t)

and then from (9) the inequality∣∣NK/Q(∆g)
∣∣ ≤ exp(C

(t+1)2

9 |DK |1/2 (log |DK |)d−1(log q)t)

follows.

In our application of Proposition 1.4 we have H(g) = H(δ(∆)5α), a = 3
and A = 3d. We put the estimates together and obtain

λ2 ≤ exp(C
(t+1)2

10 |DK |1/2 (log |DK |)d(log q)t) (10)
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and
λ3 ≤ (C

(t+1)2

11 |DK |1/2 (log |DK |)d(log q)t)55d. (11)

The estimates for λ1, λ2 and λ3 given in (8), (10) and (11) are now used
to give an upper bound for H(x), H(a4) and H(a6). From (7) we get

H(x) ≤ exp(exp(C
(t+1)2

12 |DK |1/2 (log |DK |)d(log q)t))

and (9) together with the inequality H(a4) ≤ H(x)H(4δ(∆)2) leads to

H(a4) ≤ exp(exp(C
(t+1)2

13 |DK |1/2 (log |DK |)d(log q)t)). (12)

From (6) we see that H(a6) ≤ 59H(a4)3/2H(∆)1/2 and our estimates for
H(a4) and H(∆) give

H(a6) ≤ exp(exp(C
(t+1)2

14 |DK |1/2 (log |DK |)d(log q)t)). (13)

Finally, we replace t and q in (12), (13) by the estimates in (4) and obtain

max(h(a4), h(a6)) ≤ exp(C
(s+hK log|DK |+1)2

15 (log p)ds+dhK log|DK |+2d)

≤ exp(C16(s+ hK log |DK |+ log log p)2))

as claimed in the theorem. �

1.6 Proof of the corollaries

Once the main theorem is established it is not difficult to deduce the corol-
laries to the main theorem.

Proof of Corollary 1.1. The main theorem gives a set of places T which, as
we may assume, contains with a finite place v all places which are associated
to the divisors of pvOK for pv a generator of pv∩Z. This can be done without
changing the estimates and the rational primes pv for v ∈ T then become
invertible in OT .

Let E be an elliptic curve defined over K with good reduction outside S.
Then there exists a globally minimal Weierstrass model of E over Spec(OT )
given by an equation Y 2Z = X3 +aXZ2 +bZ3, where the height of a, b ∈ OT
is bounded in terms of K and S and where ∆a,b = −16(4a3 + 27b2) ∈ O×T .
From Lemma 1.5 we see that α = δ(a)a and β = δ(b)b are in OK and
that δ(a)δ(b) ≤ (H(a)H(b))d. The construction of T implies that all prime
divisors of δ(a) and δ(b) are invertible in OT and this shows that δ(a), δ(b) ∈
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O×T . One also sees that u = δ(a)δ(b), a4 = u4a, a6 = u6b and ∆ = u12∆a,b

have logarithmic heights at most 30dmax(h(a), h(b)). Our main theorem then
gives the bound for max(h(a4), h(a6)) as stated.

Let W be the subscheme of P2
OK

= Proj(OK [X, Y, Z]) defined by the
Weierstrass equation Y 2Z = X3 + a4XZ

2 + a6Z
3 with discriminant ∆W =

∆ ∈ OK ∩O×T . The generic fiber of W over Spec(OK) is K-isomorphic to E
and this shows that W is a Weierstrass model of E over Spec(OK) with the
required properties.

Proof of Corollary 1.2. By assumption we get with the same notation as in
the first step of the proof of the main theorem that

t ≤ d(s+ 2) and q ≤ p. (14)

We replace t and q in (12) and (13) by the bounds given in (14). The same
arguments as in the proof of Corollary 1.1 then give Corollary 1.2.

Proof of Corollary 1.3. We put T = S ∪ {2, 3} = U and take ζ = −1. From
Lemma 1.7 we obtain a globally minimal Weierstrass model W of E over
Spec(OT ) defined by Y 2Z = X3 +a4XZ

2 +a6Z
3 with a4, a6 ∈ OT = OS[1/6].

Its discriminant ∆ = ∆W = −16(4a3
4 + 27a2

6) ∈ Z can be written as ±
∏
`n(`)

with 0 ≤ n(`) ≤ 11 and with n(`) = 0 unless ` ∈ S or ` = 2, 3. We see that
x = −4a4, y = 4a6 gives a solution of

27Y 2 = X3 −∆.

The discriminant ∆g of the polynomial g(X) = X3−∆ is −27∆2. We apply
Proposition 1.4, where now a = A = 27 and H = max(|∆| , 27), and get
an upper bound for H(x). Since H(∆) = |∆| ≤ q11t, it follows that |∆g| =
27 |∆|2 ≤ 27q22t andH ≤ 27 |∆| ≤ 27q11t. Using these estimates and log q ≤ q
we get

H(x) ≤ exp(C
(t+1)2

17 q170+103t)

for an effective constant C17. Finally, we replace t and q by the upper bounds
given in (14) and obtain

max(H(a4), H(a6)) ≤ exp(C
(s+1)2

18 p103(s+3)) (15)

with an effective constant C18, which completes the proof of the first part
of the corollary. From (15) we deduce the remaining parts with the same
arguments as used in the proof of Corollary 1.1.
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2 An effective Shafarevich theorem for hy-

perelliptic curves

2.1 Introduction

Let S be a finite set of places of a number field K. We denote by OK the
ring of integers in K, by OS the ring of S-integers in K and by O×S the units
in OS. A hyperelliptic curve (C,ϕ) over K is defined as a pair of a smooth,
projective and geometrically connected curve C → Spec(K) of genus g ≥ 1
together with a finite morphism ϕ : C → P1

K of degree 2. Unless stated
otherwise we identify (C,ϕ) with the Spec(K)-scheme C, and we mention
that all elliptic curves and all smooth, projective and geometrically connected
curves of genus 2 are hyperelliptic curves over the same base scheme. We say
that C has good reduction outside S if and only if a minimal regular model
of C over Spec(OS) is smooth (see section 2.2).

The first goal of this chapter (see Theorem 2.1) is to show that for givenK,
S and g ≥ 1 there exist an effective constant Ω0 and an effectively computable
set of places T ⊇ S of K with the following properties. If C is a hyperelliptic
curve over K of genus g with good reduction outside S, then there exists
a globally T -minimal Weierstrass scheme W(f) of C over OK (defined in
section 2.2). It arises from a hyperelliptic equation

Y 2 = f(X), with discriminant ∆ ∈ O×T ∩ OK ,

such that the absolute logarithmic Weil heights (defined in chapter 1) of the
coefficients of f ∈ OK [X] are at most Ω0.

From this we deduce for example a completely effective Shafarevich theo-
rem (see Corollary 2.2) for hyperelliptic curves. This generalizes and improves
the results of chapter 1 and of Coates [15]. An other application leads into the
direction of an effective Mordell Conjecture. If C has good reduction outside
S one can obtain from our hyperelliptic equation for C with bounded coef-
ficients an effective estimate in terms of K, S and g for the stable Falting’s
height of the Jacobian J(C)→ Spec(K) of C (see [17]). Similar bounds for all
smooth, projective and geometrically connected curves of genus g ≥ 2 would
imply an effective version of Falting’s theorem [24] (Mordell’s Conjecture).
We note that one part of [24] is already effective due to the work of Masser
and Wüstholz [44] and that a discussion of our method in this context is
given in section 2.3. Furthermore our method can be exhausted to deal with
the corresponding problem for some more general curves.
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The second goal (see Theorem 2.3) is to show that if C is a hyperelliptic
curve over K of genus g ≥ 1 with conductor NC (defined in section 2.2) then
C has a Weierstrass scheme W(f) over OK given by

Y 2 = f(X) ∈ OK [X]

with coefficients having absolute logarithmic Weil heights bounded effectively
in terms of K, g and NC .

In later chapters we get from this second theorem several applications
in Diophantine geometry. For instance we shall prove exponential effective
versions of Szpiro’s Discriminant Conjecture [71] and of Frey’s Height Con-
jecture [25] extended to hyperelliptic curves. Furthermore, we shall discuss
some consequences for minimal regular models of a hyperelliptic curve over
Spec(OK) and we shall show that the elliptic Q-factors of Jacobian’s of mod-
ular curves can be determined effectively. The latter will make a quantitative
result of Brumer and Silverman [12] completely effective.

The principal ideas of our proof are as follows: We construct out of S
a controlled finite set of places T ⊇ S of K such that 2 and the residue
characteristics of the finite places in T are in O×T and that OT is a principal
ideal domain (see Lemma 2.4).

Suppose that C has good reduction outside S. For technical reasons (see
section 2.3) we first consider the case where C has a K-rational Weierstrass
point (defined in section 2.2). Since 2 ∈ O×T and OT is a principal ideal
domain we get from Lockhart [39] a specific globally T -minimal Weierstrass
scheme of C (see Proposition 2.8 (i)), arising from

Y 2 = f(X), such that f(X) ∈ OT [X] is monic (16)

with discriminant ∆(f) ∈ O×T effectively controlled in terms of K and T .
By a standard reduction (introduced by Győry) we deduce from our monic

f some unit equations to which we then apply an effective theorem of Győry
and Yu [29] based on deep results of the theory of logarithmic forms. On
using the solutions of the unit equations we get τ ∈ OT such that f(X+τ) ∈
OT [X] has effectively bounded height (see Proposition 2.10 (i)). Finally after
a suitable change of variables we get in this case the desired Weierstrass
scheme over OK .

It remains to treat the case where C has no K-rational Weierstrass point.
From a global result of the theory of Weierstrass schemes of Liu [37] we get
a Weierstrass scheme of C arising from a hyperelliptic equation of the shape
of (16), where now f is in general not monic but has degree 2g + 2 (see
Proposition 2.8 (ii)).
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Since hyperelliptic curves of genus g and binary forms of degree 2g + 2
have isomorphic moduli spaces we can use effective results for binary forms
with given discriminant. We slightly extend a result of Evertse and Győry
[22], based also on the theory of logarithmic forms, and then apply it to the
homogenization F ∈ OT [X, Y ] of f . This gives an automorphism Φ of A2(OT )
such that the pullback Φ∗F of F along Φ has effectively bounded height (see
Proposition 2.10 (ii)). Finally a transformation of Y 2 = Φ∗F (X, 1) provides
the desired Weierstrass scheme over OK .

The plan of the remaining of chapter 2 is as follows: In section 2.2 we give
precise definitions for the geometric objects we shall work with. In section
2.3 we state our results and discuss several aspects of our main theorem and
our method. In section 2.4 we first give Lemma 2.4. Then we expose some
known results for Weierstrass schemes to prove afterwards Proposition 2.8.
In section 2.5 we go into number theory. We list some elementary properties
of the absolute logarithmic Weil height and of binary forms. Then we prove
two technical lemmas and Proposition 2.10. In section 2.6 we give the proofs
of the theorems and the corollary.

Throughout the whole of chapter 2 we shall use the following conventions.
We say that two hyperelliptic curves are K-isomorphic if they are isomorphic
in the category of Spec(K)-schemes, we often identify a closed point p ∈
Spec(OK) with the corresponding finite place v of K and vice versa, we
denote by log the principal value of the natural logarithm and we define the
maximum of the empty set and the product taken over the empty set as 1.

2.2 Geometric preliminaries

In this section we define precisely what we mean with models, good reduc-
tion, Weierstrass schemes, discriminants, conductors and Weierstrass points
of hyperelliptic curves.

Let R be a Dedekind domain with group of units R× and with quotient
field a number field K. Let C → Spec(K) be a hyperelliptic curve with genus
g ≥ 1. For brevity we write B = Spec(R).

If Y is an integral, projective and flat B-scheme of dimension 2 which is
regular, then we say that Y is an arithmetic surface over B. An arithmetic
surface M → B is a minimal arithmetic surface if every birational map
Y 99KM of arithmetic surfaces over B is a birational morphism.

Let C be a projective, normal and flat B-scheme of dimension 2 with
generic fiber Cη, where Cη is K-isomorphic to C. We call the pair (C, ψ) of C
together with a K-isomorphism ψ : Cη → C a model of C over B. A morphism
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between two models (C, ψ), (C ′, ψ′) of C is a morphism in the category of
B-schemes that is compatible with the K-isomorphisms ψ : Cη → C and
ψ′ : C ′η → C. For simplicity we suppress ψ and write C instead of (C, ψ).

Let (C, ψ) be a model of C over B. If C is a regular scheme then it is an
arithmetic surface over B and we call (C, ψ) a regular model of C over B.
If C is a minimal arithmetic surface we say that (C, ψ) is a minimal regular
model of C over B. It exists and is unique up to an isomorphism of models
over B (see for example [38, Proposition 10.1.8]).

We say that C has good reduction at a closed point in Spec(OK) if there
exists a model of C which is smooth over the spectrum of the local ring at
this point.

Let S be a finite set of places of K. Then the finite places in S are in
bijection with a subset of Spec(OK), denoted also by S. We say that C has
good reduction outside S if it has good reduction at all closed points in
Spec(OK) which are not in S. This is equivalent to the statement that the
minimal regular model of C over Spec(OS) is smooth, where OS is the ring
of S-integers in K.

To get effective results we shall use the theory of Weierstrass schemes
of C over D, where D is the spectrum of the local ring Op at an arbitrary
p ∈ Spec(OK). For elliptic curves such a theory is well-known (see for example
[38]) and a generalization to hyperelliptic curves is due to Liu [37]. The
function field K(C) of C can be written as K(X)[Y ] with a relation

Y 2 + k(X)Y = f(X), f(X), k(X) ∈ K[X], (17)

where 2g + 1 ≤ max
(
2deg k(X), deg f(X)

)
≤ 2g + 2. We say that (17) is a

hyperelliptic equation for C defined over K.
We first assume that p ∈ Spec(OK) is a closed point and we denote

by −id : C → C a hyperelliptic involution on (C,ϕ), where −id is the
automorphism of order 2 induced by a generator of the Galois group of K(C)
over ϕ∗(K(P1

K)). We note that −id is unique if g ≥ 2. A Weierstrass scheme
W of C over Spec(Op) is the normalization of the integral scheme

Spec(Op[X]) ∪ Spec(Op[1/X]) in C,

for X ∈ K(C) with K(X) fixed by the action of 〈−id〉 on K(C). For each
such W there exists Y ∈ K(C) such that the integral closure of Op[X] in
K(C) is a free Op[X]-module with base {1, Y } and such that the rational
functions Y and X are related by (17). We say that the Weierstrass scheme
W arises from this hyperelliptic equation.

Let η be the generic point of Spec(OK). A Weierstrass scheme W =
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W(f, k) of C over Spec(Oη) = Spec(K) arising from a hyperelliptic equation
(17) is defined as the union of the spectra of

K[X, Y ]/(Y 2 + k(X)Y − f(X)) and K[Z,W ]/(W 2 + k1(Z)W − f1(Z)),

where k1(Z) = k(1/Z)Zg+1, f1(Z) = f(1/Z)Z2g+2 and the two open sub-
schemes glue along the principal open subschemes D(X) ∼= D(Z) with re-
lations XZ = 1 and Y = Xg+1W . If further k = 0 we write W = W(f).
We note that the curve C → Spec(K) is K-isomorphic to any Weierstrass
scheme W of C over Spec(K) and that there exists a one to one correspon-
dence of Weierstrass schemes of C over Spec(K) and hyperelliptic equations
of C defined over K.

Geometric definitions of the discriminant of a hyperelliptic curve can be
made by the use of the relative dualizing sheaf of a minimal regular model
over a Dedekind scheme (see [33] or [57], [18]). For our purpose we shall
need a more explicit definition and in virtue of the constructive Weierstrass
model theory (see [37]) we define the discriminant ∆ of a Weierstrass scheme
W → D of C as follows: If W → D arises from (17), then

∆ =

{
24g∆(u) for deg u = 2g + 2

24gµ2
0∆(u) otherwise,

(18)

where u = f + k2/4 has leading coefficient µ0 and ∆(w) is the usual discrim-
inant of a polynomial w ∈ K[X].

To measure somewhat crudely the arithmetical size of a Weierstrass
scheme W of C over D we take

h(W) = max
(
h(∆), h(u)

)
,

for h(∆) and h(u) the absolute logarithmic Weil height (defined in chapter
1) of ∆ and the maximum of the absolute logarithmic Weil heights of the
coefficients of u respectively.

Let fp be the exponent of the conductor of the Jacobian variety of C over
K at a closed point p ∈ Spec(OK) (defined in [40, p. 575]). We take dp = 1 in
the case where C has bad reduction at p and its Jacobian is K-isomorphic to
the generic fiber of an abelian scheme over Spec(Op) and dp = 0 otherwise.
Then we define the conductor ideal FC of C as FC =

∏
pfp+dp with the

product taken over all closed points p ∈ Spec(OK) and the conductor NC of
C as

NC = NK/Q(FC), (19)
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where NK/Q is the ideal norm from K into Q. We mention that the positive
integer fp coincide with the exponent of the conductor at p of the l-adic
representation (see Serre [58])

Gal(K/K)→ AutQl
(H1

ét(C ×K Spec(K),Ql)),

for K an algebraic closure of K and for l a rational prime different from the
residue characteristic of p.

We recall that p is a closed point of Spec(OK). Let T be an arbitrary
finite set of places of K. Then the Weierstrass scheme Wp → Spec(Op) of C
with discriminant ∆p is a minimal Weierstrass scheme of C over Spec(Op),
if ordp∆p is minimal when taken over all Weierstrass schemes of C over
Spec(Op). The minimal Weierstrass scheme over Spec(Op) is for g ≥ 2 in
general not unique (see [37, remarque 5]). We say that a Weierstrass scheme
W → D with discriminant ∆ is globally T -minimal over R ⊆ OT if it arises
from a hyperelliptic equation with coefficients in R such that ordp∆ = ordp∆p

at each closed point p ∈ Spec(OT ). Hence from a morphism D → Spec(R)
and a globally T -minimal Weierstrass scheme over R one can get a model
of C over Spec(R), which is, as a model over D, isomorphic to W . For our
purpose it suffices to consider Weierstrass schemes of C over D and we say
that a Weierstrass scheme is globally minimal over R if it is globally T0-
minimal over R, where T0 is the empty set. We conclude the discussion of
these schemes with the following explicit criterion for good reduction of C at
p: The curve C has good reduction at p if and only if a minimal Weierstrass
scheme Wp → Spec(Op) of C is smooth.

A K-rational Weierstrass point of C is a section P : Spec(K) → C
with P = −id ◦ P . Let Σ be the ramification locus of the double covering
ϕ : C → P1

K . We get that P ∈ C(K) ∩ Σ and then we say that the pair
((C,ϕ), P ) is a pointed hyperelliptic curve. A hyperelliptic equation (17) of
C with f monic of degree 2g + 1 and deg k ≤ g is called a Weierstrass
equation for C. Lockhart considered in [39] pointed hyperelliptic curves and
showed that they admit a Weierstrass equation. The morphisms of pointed
hyperelliptic curves over K are those Spec(K)-morphisms of hyperelliptic
curves defined over K which are compatible with the K-rational Weierstrass
sections of the pointed curves.

Let Y 2 = f(X) and V 2 = l(U) be two hyperelliptic equations of C defined
over K with discriminants ∆ and ∆′ respectively. Then [38, Corollary 7.4.33]
gives

Φ =

(
α β
γ δ

)
∈ GL2(K), λ ∈ K×
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such that

U = ΦX =
αX + β

γX + δ
, V =

λY

(γX + δ)g+1

and that
∆′ = λ4(2g+1)(det Φ)−2(g+1)(2g+1)∆. (20)

Now we are ready to state the results of chapter 2 and this will be done
in the next section.

2.3 Statement of the results

In this section we state the theorems and corollaries and then we discuss
several aspects of these results and of our method. In the sequel k0 is an
effectively computable absolute constant.

Let S be a finite set of places of a number field K. Let OS be the ring
of S-integers in K with group of units O×S and OK be the ring of integers
in K. Let d be the degree of K and DK be the absolute value of the field
discriminant of K over Q. For g ≥ 1 we let ν = 6(2g + 1)(2g)(2g − 1)d2 and
to measure S we take

σ = s+ hS and p, (21)

for s the number of finite places in S, hS the class number of OS and p the
largest residue characteristic of the finite places in S. We now can state the
first theorem.

Theorem 2.1. There is a finite set of places T ⊇ S such that if C is a hyper-
elliptic curve over K of genus g with good reduction outside S then there is
a globally T -minimal Weierstrass scheme W(f) of C over OK with ∆ ∈ O×T .
Furthermore,

(i) if C has a K-rational Weierstrass point, then f is monic separ-

able of degree 2g + 1 and h(W(f)) ≤ (νσ)5νσpνds/2D
νhS/4
K ,

(ii) if C has no K-rational Weierstrass point, then f is separable of

degree 2g + 2 and h(W(f)) ≤ (νσ)k0(2ν)3σ4
p(3ν)3σ4

D
(3ν)3σ4

K .

The proof shows in addition that the set of places T of K in the theorem
can be constructed effectively. For example we can take any set of places
T ⊇ S of K with the properties that |T | ≤ dσ, that OT is a principal ideal
domain and that the residue characteristics ` of the finite places in T are at
most 2pD

1/2
K and satisfy 2` ∈ O×T (see Lemma 2.4). If K = Q we can take

T = S ∪ {2}.
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The above result holds for all elliptic and all smooth, projective and
geometrically connected curves of genus 2 over K, since they are hyperelliptic.
By adding to T the places of K above 3 we can assume in the elliptic case
after a suitable change of variables which does not increase our bounds that
f(X) = X3 + a4X + a6. Therefore our theorem generalizes the results for
elliptic curves over K of Coates, who covered in [15] the case K = Q, and
of chapter 1 to arbitrary hyperelliptic curves over K. Our explicit bound
(take in part (i) g = 1, K = Q) is sharper in all quantities than the explicit
one of Coates. Furthermore, the effective bound of chapter 1, which is double
exponential and only explicit in terms of S, is reduced to a completely explicit
polynomial bound (take in part (i) g = 1). For the sake of completeness we
also refer to a paper of Smart [67] in which he calculated a complete list of
genus 2 curves over Q with good reduction outside 2.

In view of an effective Mordell Conjecture it is possible, as indicated in the
introduction, to bound effectively the stable Faltings heights of the Jacobian’s
of our curves in terms of K, g and S. De Jong and Rémond establish in a not
yet published paper [17] such bounds for cyclic covers of P1

K with prime degree
and with good reduction outside S. They combine the method introduced
by Paršin, which we describe below, with effective methods coming from the
theory of logarithmic forms. We remark that the arguments of section 2.5 and
2.6 would also give similar bounds for curves with good reduction outside S,
which correspond to function fields K(X)[Y ] with a relation Y m = f(X),
for m ≥ 2 and for f as in Proposition 2.10. Moreover, it seems that our
method of constructing a minimal equation for the curve and then applying
effective results based on the theory of logarithmic forms, can be used to
deduce analogous estimates for Jacobian’s of more general curves.

We discuss the methods of the proofs from a technical point of view.
Suppose that C has good reduction outside S. To get from Lemma 2.6 a
specific Weierstrass scheme of C over a Dedekind domain R we need that R
is a principal ideal domain. In our proof we extend S to T such that OT is
a principal ideal domain. It seems that one can avoid an extension of S by
working, after a base change, with CL → Spec(L), for L = H(K) the Hilbert
class field of K. But if K 6= L one does not get a Weierstrass scheme over
Spec(K).

In 1972 Paršin [52] introduced an other approach to get a specific Weier-
strass scheme over a finite extension of K. We sketch a reformulation of Oort
[51]: There exists a finite extension W ⊇ K, unramified over K at all places
of W that do not extend a place in T , such that C(W ) contains the 2g + 2
Weierstrass points of C. With the help of a fixed K-rational Weierstrass
point we embed CW → Spec(W ) in its Jacobian J(CW ) → Spec(W ) which
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extends to a smooth abelian scheme J → Spec(O), where O denotes the
integral closure of OT in W . Then on using that the images of Weierstrass
points are 2-torsion points of J one can deduce a Weierstrass equation for
CW → Spec(W ) with coefficients in O and discriminant ∆ invertible in O.
But as before this approach gives in general no equation over K.

We now motivate the separation of the statements in (i) and (ii) de-
pending on whether a K-rational Weierstrass point of C exists or not. The
globally T -minimal Weierstrass scheme W(f) from Proposition 2.8 has the
property that f has degree 2g + 2 if and only if we are in part (ii). But only
if deg f = 2g + 2 we get from the Φ ∈ SL2(OT ) of Proposition 2.10, which
is not necessarily a translation, a Weierstrass scheme of C over OT . On the
other hand in part (i) we can reduce the problem directly to solve a unit
equation. This has the advantage that it leads to explicit estimates in (i),
which depend directly on the recently in [29] established and at the moment
best bounds for unit equations. The method of (i) only works if f is monic
and thus can not be applied to the arbitrary f of (ii).

From our theorem we deduce a completely effective Shafarevich theorem
for hyperelliptic curves of given genus. We recall that k0 is an effectively
computable absolute constant and that S is a finite set of places of a number
field K. Let g ≥ 1 be an integer and let ν, σ, p, d and DK be as above (see
(21)).

Corollary 2.2. The K-isomorphism classes of hyperelliptic curves of genus
g over K with good reduction outside S can be determined effectively and
their number is at most

exp((νσ)k0(2ν)3σ4

p(3ν)3σ4

D
(3ν)3σ4

K ).

In particular we get that the number of isomorphism classes of pointed
hyperelliptic curves over K of genus g with good reduction outside S is at
most

exp
(
(νσ)6νσpνds/2D

νhS/4
K

)
.

We next give an interpretation of Theorem 2.1 in terms of bad reduction.
Instead of describing, for fixed K, S and g ≥ 1, the hyperelliptic curves over
K of genus g with good reduction outside S we now take an arbitrary hyper-
elliptic curve C over K of genus g ≥ 1 and describe it by the bad reduction
set SC ⊂ Spec(OK) where C has not good reduction. As the applications
in the following chapters indicate this new interpretation seems more conve-
nient from a theoretical point of view. For simplicity we write S for SC and
to measure this set we take

σ = s+ hS, NC and p
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for s the number of finite places in S, hS the class number of OS, NC the
conductor of C and p the largest rational prime divisor of NC . Let d and DK

be the degree and the absolute value of the field discriminant of K over Q
respectively. As above we take ν = 6(2g + 1)(2g)(2g − 1)d2.

Theorem 2.3. Suppose C is a hyperelliptic curve defined over K of genus
g ≥ 1 with bad reduction set S. Then there is a Weierstrass scheme W(f) of
C over OK such that

(i) if C has a K-rational Weierstrass point, then f is monic separ-

able of degree 2g + 1 and h(W(f)) ≤ (2dD
hS/2
K NC)ν

2
,

(ii) if C has no K-rational Weierstrass point, then f is separable of

degree 2g + 2 and h(W(f)) ≤ (νσ)k0(2ν)3σ4
p(3ν)3σ4

D
(3ν)3σ4

K .

From this we get an effective estimate for h(W(f)) in terms of K, g and
NC , since s and p are at most NC and hS ≤ hK . In forthcoming work we
will deduce several Diophantine applications from this (see the discussion in
section 2.1).

In the last part of this section we discuss the constants. For the Diophan-
tine applications given later it is important that the dependence on SC of the
bound in Theorem 2.3 is as sharp as possible. This motivated to use, instead
of p and σ, the more precise measure NC of SC for some estimates. As a
consequence for hyperelliptic curves with a K-rational Weierstrass point we
get that the shape of the bounds in the applications are best possible in view
of the actual state of the art in the theory of logarithmic forms. The appear-
ance of k0 in the estimates can be justified as follows. There exists no result
that gives for an arbitrary binary form F ∈ OT [X, Y ] with nonzero discrimi-
nant ∆F an element Φ ∈ SL2(OT ) such that h(Φ∗F ) is explicitly bounded in
terms of K, T , h(∆F ) and the degree of F (see section 2.5). Effective results
exist but to make them explicit one is forced into lengthy computations of
constants. We omit the latter and to get bounds as explicit as possible we
use the actual best effective result of [22] which leads to explicit bounds in
the above terms and effectively computable absolute constants c6, c7. Then,
as a consequence of explicitly computing the constants in every step of our
proofs we derived the relation

k0 = c6c7.

We note that throughout the whole chapter 2 the constants are calculated
according to Baker’s philosophy: “Although some care has been taken to
obtain numerical constants reasonably close to the best that can be acquired
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with the present method of proof, there is, nevertheless, little doubt that the
numbers on the right of the above inequalities can be reduced to a certain
extent by means of minor refinements. In particular it will be seen that
several of the numbers occurring in our estimates have been freely rounded
off in order that the final conclusion should assume a simple form, and so
some obvious improvements are immediately obtainable.”

Finally, we remark that in view of our theoretical applications we tried
to polish the dependence of the bounds on S (or SC). But on going through
our arguments one can improve with little effort the dependence on other
parameters of interest as for example the discriminant DK or the degree d of
K.

2.4 Minimal Weierstrass schemes with special proper-
ties

In this section we first show that one can construct effectively a set of places
T out of S such that OT is a principal ideal domain, where S is a finite set of
places of a number field K. Then, after stating a known result for hyperellip-
tic curves C over K, we prove Lemma 2.7 which describes a relation between
the structure of Weierstrass schemes and the existence of a K-rational Weier-
strass point of C. In the last part we give the proof of Proposition 2.8. It
shows that each C with good reduction outside S has a globally T -minimal
Weierstrass scheme over OT with discriminant controlled effectively in terms
of K and T .

We recall that hS is the class number of the ring of S-integers OS, that
OK denotes the ring of integers in K, and that DK is the absolute value
of the discriminant of K over Q. Let s, NS and p be the number of finite
places in S, the product taken over the finite places v ∈ S of the number of
elements in the residue field of v and the largest rational prime divisor of NS

respectively. Then let t, NT and q be the corresponding quantities associated
to a finite set of places T of K. The next lemma allows us to remove class
group obstructions in connection with globally minimal Weierstrass schemes.
We thank at this place Sergej Gorchinskiy for improving the upper bound
for t in Lemma 1.6 to the following estimate in

Lemma 2.4. There exists a set T ⊇ S such that OT is a principal ideal do-
main and that the following inequalities NT ≤ NSD

(hS−1)/2
K , q ≤ max(p,D

1/2
K )

and t ≤ s+ hS − 1 hold.

Proof. For the class group of a Dedekind domain R we write Cl(R) and we
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note that a localization R ↪→ R′ gives a surjective morphism Cl(R)→ Cl(R′)
of abelian groups. Hence Cl(OK) surjects onto Cl(OS) and we assume that ā

is a non-trivial element of Cl(OS). Thus [34, Theorem 4, p. 119] gives a non-
principal ideal p ∈ Spec(OS) ↪→ Spec(OK) such that p divides an integral

representative of ā and that the residue field of p has at most D
1/2
K elements.

Since p is not a principal OS-ideal its class in Cl(OS) is a non-trivial element
in the kernel of the surjective morphism Cl(OS)→ Cl(OS∪{p}). This implies
that the class number of the latter is at most hS − 1. Then, after repeating
this argument at most hS − 1 times, we conclude that there exists a set of
places T ⊇ S of K with the required properties.

The following lemma is used in the proof of Proposition 2.8 to bound the
absolute Weil height of the discriminant of a Weierstrass scheme. Let d be
the degree of K over Q and let nT be the product taken over the finite places
v ∈ T of the logarithm of the number of elements in the residue field of v.

Lemma 2.5. There exists a fundamental system Σ of T -units with

h(ε) ≤ (10 |Σ|!)2(dDK)dnT , ε ∈ Σ.

Proof. Let RT and RK be the T -regulator and the regulator of K respectively.
From [29, Remark 3] we get RT ≤ RKhKnT and since RKhK is at most

(2d)d−1D
1/2
K max(1, logDK)d−1/(d− 1)! (see [35, Theorem 6.5]) this leads to

RT ≤ (2d)d−1D
1/2
K max(1, logDK)d−1nT/(d− 1)! . (22)

Then the lemma follows from [29, Lemma 2] which gives a fundamental
system Σ of T -units with absolute logarithmic Weil heights bounded by
40(|Σ|!)2 max(1, log d)RT .

Let C be a hyperelliptic curve of genus g ≥ 1 defined over K and let R
be a Dedekind domain with quotient field K and with group of units R×.
The following lemma is a direct consequence of [37, Proposition 2], where
the latter is a global result obtained by Liu in his pioneering paper [37] on
Weierstrass models of C over discrete valuation rings.

Lemma 2.6. Suppose that R is a principal ideal domain and that a minimal
regular model of C over Spec(R) is smooth. Then there exists a Weierstrass
scheme W(f, k) of C with f, k ∈ R[X] and with discriminant ∆ ∈ R×.

We next discuss a relation between K-rational Weierstrass points and
Weierstrass schemes W → D (defined in section 2.2) of C. This will be used
in the proof of part (ii) of the proposition below.
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Lemma 2.7. If C has no K-rational Weierstrass point and if W → D is a
Weierstrass scheme of C arising from Y 2 = f(X), then f has degree 2g+ 2.

Proof. We take C as in the lemma. If W → D is a Weierstrass scheme of
C arising from Y 2 = f(X) then f has degree 2g + 1 or 2g + 2. We assume
that f has degree 2g + 1 and deduce a contradiction. Let αi ∈ K be the
coefficients of f , where α0 6= 0 denotes the leading coefficient. Then the
change of coordinates X = α0U , Y = αg+1

0 V together with (20) gives a
Weierstrass equation

V 2 = U2g+1 + α
−(2g+2)
0 (α1U

2g + . . .+ α2g+1)

for C such that the polynomial on the right-hand side has nonzero discrimi-
nant. Then [39, Theorem 1.7] implies that this Weierstrass equation defines
a regular affine curve over Spec(K). Therefore the closure of an embedding
of this affine curve into the projective space Pg+2

K is a hyperelliptic curve
C ′ → Spec(K) with a K-rational Weierstrass point (for details we refer to
[39, p. 731]). It follows that K(C ′) = K(C) and then that the curves C and
C ′ are K-isomorphic which leads to a contradiction to our assumption that
C has no K-rational Weierstrass point. We conclude that deg f = 2g+2.

For our proposition below we assume that a finite set of places T of K
contains S, that OT is a principal ideal domain and that 2 is invertible in
OT . Let Σ be a fundamental system of T -units and let ζ be a generator of
the torsion part of the T -units O×T . We write U = (Σ, ζ) and then we say
that ε ∈ O×T is U -reduced if it takes the form ε = ζr

∏
ε∈Σ ε

r(ε), 0 ≤ r, r(ε) <
4(g + 1)(2g + 1). Let t be the number of finite places in T , let nT be the
product taken over the finite places v ∈ T of the logarithm of the number of
elements in the residue field of v and we recall that d denotes the degree of
K over Q.

Proposition 2.8. If U is as above and if C is a hyperelliptic curve over
K of genus g ≥ 1 with good reduction outside S, then there is a globally
T -minimal Weierstrass scheme W(f) of C over OT such that ∆ ∈ O×T is
U-reduced. Furthermore,

(i) if C has a K-rational Weierstrass point, then f ∈ OT [X] is sep-
arable and monic of degree 2g + 1,

(ii) if C has no K-rational Weierstrass point, then f ∈ OT [X] is sep-
arable of degree 2g + 2.

There is a U as above such that further h(∆(f)) ≤ (50g(t+d)!)2(2dDK)2dnT .

33



Proof. We now take a hyperelliptic curve C over K of genus g ≥ 1 with good
reduction outside S. Since T contains S we conclude that our curve C has a
forteriori good reduction outside T .

(i) We first suppose that C has a K-rational Weierstrass point P and to
simplify notation we shall write C for the pointed hyperelliptic curve (C,P ).
In a first step we construct a globally T -minimal Weierstrass scheme of C
over OK [1/2] ⊆ OT with discriminant invertible in OT . Let a be an integral
representative of the Weierstrass class (see [39, Definition 2.7]) of C. Since
OT is a principal ideal domain we get a T -integer α and a fractional ideal
aT of K, which is composed only of primes in T , such that a = αaT . After
multiplying this ideal equation with a suitable T -unit in OK we see that
there is an integral representative b of the Weierstrass class of C which is
composed only of primes in T . An application of [39, Proposition 2.8] to b

and C gives rational functions U , V in K(C) = K(U)[V ] and polynomials
l,m ∈ OK [U ] such that l is monic of degree 2g + 1, the degree of m is at
most g, and the Weierstrass scheme W(l,m) has discriminant ∆′ with

∆′OK = b4g(2g+1)DC ,

for DC the minimal discriminant ideal of C (see [39, Definition 2.5]). To see
that ∆′ ∈ O×T we let p ∈ Spec(OT ) be an arbitrary closed point. Since our
curve C has good reduction outside T we get that a minimal Weierstrass
scheme Wp → Spec(Op) of C is smooth. In particular this implies that the
special fiber of Wp is smooth over the spectrum of the residue field at p and
therefore p does not divide the discriminant of Wp. We conclude that DC is
invertible in OT and then the above representation of ∆′OK shows ∆′ ∈ O×T .
The equations

W = U, Z = V +m(U)/2

induce an isomorphism between W(l,m) and the Weierstrass scheme W(u)
of C, where u = l+m2/4. Furthermore, the discriminant of W(u) equals ∆′

and since 2 ∈ O×T , deg m ≤ g we see that u ∈ OT [W ] is monic with degree
2g + 1.

In a second step we reduce the discriminant. Since ∆′ ∈ O×T there exist
integers a, a(ε) such that ∆′ takes the form ∆′ = ζa

∏
εa(ε) with the product

taken over ε ∈ Σ. By reducing the exponents a, a(ε) modulo 4g(2g + 1) we
can rewrite the above equation as ∆′ = ω−4g(2g+1)ζr

∏
ε∈Σ ε

r(ε) with integers
0 ≤ r, r(ε) < 4g(2g + 1) and ω ∈ O×T . From

X = ω2W, Y = ω2g+1Z

we see that the Weierstrass schemeW(f) of C, where f(X) = ω4g+2u(X/ω2),
has U -reduced discriminant ∆ = ω4g(2g+1)∆′ and is isomorphic to W(u).
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Furthermore, the properties of u imply that f ∈ OT [X] is monic and has
degree 2g + 1. Hence we conclude that the Weierstrass scheme W(f) of C
has the required properties.

(ii) We now assume that C has no K-rational Weierstrass point. Since our
curve C has good reduction outside T there exists a minimal regular model of
C over Spec(OT ) which is smooth. Then an application of Lemma 2.6 with
R = OT to C gives a Weierstrass scheme W(l,m) of C with discriminant
∆′ ∈ O×T and with l,m ∈ OT [U ]. As in (i) we get that the equation u =
l+m2/4 in OT [U ] induces an isomorphism between W(l,m) and W(u). Our
assumption made in (ii) combined with Lemma 2.7, applied to W(u), shows
that u has degree 2g + 2 and then we see that ∆′ is also the discriminant of
W(u). Next we reduce, in the same way as in (i), with a suitable ω ∈ O×T and
with X = ω2W,Y = ω2g+2Z the exponents of ∆′ modulo 4(g+1)(2g+1). This
gives f ∈ OT [X] of degree 2g+ 2 such thatW(f) is isomorphic toW(u) and
such that the discriminant ∆ of W(f) is U -reduced. Since ∆ is invertible in
OT we see that the Weierstrass schemeW(f) of C has the desired properties.

To prove the last statement of the proposition we choose U = (Σ, ζ)
such that Σ is a fundamental system of T -units with heights bounded as
in Lemma 2.5. Then the first part of the proposition provides a globally T -
minimal Weierstrass schemeW(f) of C over OT with U -reduced discriminant
∆ ∈ O×T such that f has the properties of (i) or (ii). Since ∆ is U -reduced
it takes the form ζr

∏
ε∈Σ ε

r(ε) for integers 0 ≤ r, r(ε) < 4(g + 1)(2g + 1).
Therefore the bound in Lemma 2.5 together with the estimates |Σ| ≤ t+d−1
and h(∆(f)) ≤ 4g + h(∆) leads to

h(∆(f)) ≤ 24g2(10(t+ d)!)2(2dDK)2dnT + 4g.

We conclude that this U is suitable for the last statement and this completes
the proof of the proposition.

2.5 Binary forms and monic polynomials with given
discriminant

In the first part of this section we collect some results which we shall use in the
proof of Proposition 2.10. We state elementary properties of binary forms and
we give a lemma relating polynomials in K[X] with their homogenizations
in K[X, Y ], where in this section K is a number field, T is an arbitrary
finite set of places of K and OK is the ring of integers in K. In the second
part we prove Proposition 2.10 which gives effective bounds for the height of
pullbacks of binary forms and monic polynomials.
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First we discuss some properties of binary forms. Let n ≥ 1, q ∈ Q,
f ∈ K[X] with roots α1, . . . , αn and let α, β be algebraic over Q. For the
readers convenience we recall some properties of the absolute multiplicative
Weil height H on K (defined in chapter 1). We get

H(αβ) ≤ H(α)H(β), H(αq) = H(α)|q|,

H(f) ≤ n

n∏
i=1

H(αi)
n, H(αi) ≤ (4H(f))n+1

(1 ≤ i ≤ n) and H(α1 + . . . + αn) ≤ nH(α1) · · ·H(αn) (see for example
[22, Lemma 1]). For an arbitrary polynomial in K[X, Y ] we define its height,
denoted also by H, as the maximum of the heights of its coefficients and we
denote by h = logH the absolute logarithmic Weil height on K[X, Y ].

Over a finite field extension of K we get that the binary form G(X, Y ) =∑
0≤i≤n βiX

n−iY i ∈ K[X, Y ] factors as
∏

1≤j≤n(ρjX − ξjY ) and then the
discriminant of G is defined as

∆(G) =
∏

1≤i<j≤n

(ρiξj − ρjξi)2.

The discriminant ∆(G) has the properties (see [22, p. 169]) that ∆(G) ∈
Z[β0, . . . , βn] and ∆(αG) = α2n−2∆(G). The pullback Ψ∗G of G by Ψ ∈
GL2(K) can be written as

Ψ∗G(X, Y ) = G(αX + βY, γX + δY ) for Ψ =

(
α β
γ δ

)
and has discriminant ∆(Ψ∗G) = (det Ψ)n(n−1)∆(G).

Next we prove some elementary results for binary forms which we did not
find in the literature in the form we need them in the proof of the proposition
below. Suppose that f(X) = α0X

n + . . .+ αn ∈ K[X] has degree n ≥ 1. We
write the monic polynomial

α−1
0 f(X) =

∏
1≤j≤n

(X − γj) ∈ K[X]

as a product taken over k of irreducible and monic fk(X) ∈ K[X] and we
denote by F and Fk the homogenizations in K[X, Y ] of f and fk respectively.
Let ρ : K → GL2(K) be the representation given by

τ 7→
(

1 τ
0 1

)
.
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Then (τ, f) 7→ τ ∗f with τ ∗f(X) = ρ(τ)∗F (X, 1) defines an action of K on
K[X]. We recall that T is an arbitrary finite set of places of K, that OT
denotes the T -integers in K and that O×T are the units in OT . If G is a
binary form with no multiple factors, then we denote by dT (G) and (G)T the
T -discriminant and the OT -ideal of G respectively. Let |a|T be the T -norm
of an OT -ideal a of K. For these definitions see for example [22, p. 173].

Lemma 2.9. The discriminant of F and f are equal and the binary forms
Fk ∈ K[X, Y ] are irreducible and satisfy

∏
k Fk = α−1

0 F . If F ∈ OT [X, Y ] is
monic with ∆(F ) ∈ O×T , then dT (F ) = OT .

Proof. The leading coefficient α0 ∈ K× of F is the product of the elements
ρj, thus all ρj are nonzero and then with F (X, 1) = f(X) we get

F (X, Y ) =
∏

1≤j≤n

ρj(X −
ξj
ρj
Y ) = α0

∏
1≤j≤n

(X − γjY ),

which implies ∆(F ) = ∆(f). We write Fk as a product taken over l of
irreducible and monic binary forms Fkl ∈ K[X, Y ]. Let nk and nkl be the
degree of Fk and Fkl respectively. The polynomial Fk(X, 1) has degree nk,
hence all Fkl(X, 1) ∈ K[X] have also degree nkl ≥ 1 respectively. Thus the
properties of fk ∈ K[X] show that fk(X) = Fkl(X, 1) for some l, which
implies that Fk = Fkl is irreducible. We observe that

∏
k fk has the same

coefficients as α−1
0 F which implies the second statement. The OT -ideal (F )−1

T

consists of the elements α ∈ K such that αF ∈ OT [X, Y ]. This gives for our
monic F ∈ OT [X, Y ] that (F )−1

T = OT and then our assumption ∆(F ) ∈ O×T
leads to dT (F ) = OT .

Based on the effective resolution of T -unit equations we now give a propo-
sition which allows us later to construct Weierstrass schemes with effectively
bounded height. In the sequel k0 is an effectively computable absolute con-
stant. Let NT be the product taken over the finite places v ∈ T of the
number of elements in the residue field of v. Let t be the number of finite
places in T and let q be the largest residue characteristic of the finite places
in T . As before d and DK denote the degree of K and the absolute value
of the field discriminant of K over Q respectively. For an arbitrary set of
places S ⊆ T let OS be the ring of S-integers and for an integer n we define
µ = 3n(n− 1)(n− 2)d.

Proposition 2.10. Suppose f ∈ OS[X] has degree n ≥ 3 and discriminant
∆(f) ∈ O×T and let F be the homogenization of f in OU [X, Y ]. Then the
following two statements hold.
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(i) If f is monic, then there is a unipotent translation ρ(τ) ∈ SL2(OS)

such that h(τ ∗f) ≤ nh(∆(f)) + (NTD
1/3
K )µ(µ(t+ 1))4µ(t+1).

(ii) In general there exists an element Φ ∈ SL2(OT ) which satisfies that

h(Φ∗F ) ≤ 22nh(∆(F )) + q2n8d(t2+1)2
D

2n8(t+1)
K (n(t+ d))k0n8d(t2+1)2

.

Proof. (i) We start with some notation. Since n ≥ 3 we can choose pairwise
different roots α, β, γ of f . For L = K(α, β, γ) the quantities DL, l, U , RU

and u denote the absolute value of the discriminant of L over Q, the degree
[L : Q], the places of L which lie above T together with the infinite places
of L, the U -regulator of L and the number of finite places in U respectively.
For brevity we write m = n(n− 1)(n− 2).

First we show that H(α − γ) is bounded explicitly in terms of n, K, T
and H(∆(f)). The roots of our monic f ∈ OU [X] are U -integral and ∆(f) is
a U -unit. This shows that all factors of ∆(f) are T -units, in particular α−β,
β − γ and α− γ. Therefore we get a U -unit equation

(α− β)

(α− γ)
+

(β − γ)

(α− γ)
= 1.

An application of [29, Theorem 1] to the solutions of this U -unit equation
gives a constant ΩU = exp(7κTRUN

m
T max(1, logRU)), for κT = c1(md,m(t+

d)) defined in [29, Theorem 1], such that

H(
γ − α
α− β

) ≤ ΩU . (23)

The term ΩU depends on RU for which we now derive an upper bound in
terms of K, n and T . For nU defined similarly as nT with U in place of T we
deduce nU ≤ ((l/d)tnT )l/d and then (22), with L and U in place of K and T
respectively, leads to

RU ≤ (2l)l−1D
1/2
L max(1, DL)l−1((l/d)tnT )l/d.

To get a sharp estimate for DL in terms of T we first show that (DL/K)T =
OT , where DL/K is the relative discriminant of L over K. We consider for κ ∈
{α, β, γ} the fieldM = K(κ), we write f(X) as a product of irreducible monic
polynomials fk(X) ∈ K[X] and we let F and Fk be the homogenizations in
K[X, Y ] of f and fk respectively. Lemma 2.9 implies that F =

∏
k Fk can

be associated to a system of fields which contains the field M and then [22,
Lemma 15] shows

dT (F ) ⊆ (DM/K)T ,
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for DM/K the relative discriminant of M over K. Thus our assumption that
∆(f) ∈ O×T together with Lemma 2.9 shows that (DM/K)T is trivial. Let
DL/K and DM/K be the relative different of L and M over K respectively.
The multiplicativity of differents in towers together with [68, Lemma 6] leads
to DL/K |

∏
κ DM/K and taking the norm from L into K gives

DL/K |
∏
κ

D
[L:M ]
M/K .

Thus we deduce that (DL/K)T = OT , since all (DM/K)T are trivial and then
the arguments of [22, p. 194] show

DL ≤ (DKNT )l/d(l/d)lt.

This together with the above upper bound for RU and the estimate l/d ≤
n(n− 1)(n− 2) = m gives RU ≤ cKcT , for

cK = D
m/2
K (3m3d2 max(1, logDK))md−1,

cT = (N
1/2
T nT )m(max(t, 1)m2t max(1, logNT ))md−1.

Then we replace in the definition of ΩU the term RU by cKcT and denote by
Ω the resulting term. Hence we get ΩU ≤ Ω and since the roots α, β, γ of f
were chosen arbitrarily it follows from (23) that H(∆(f)(α − β)−n(n−1)) ≤
(2Ω2)n(n−1). This leads to H(α − β)n(n−1) ≤ H(∆(f))(2Ω2)n(n−1) which to-
gether with (23) gives

H(α− γ) ≤ 2Ω3H(∆(f))1/(n(n−1)). (24)

To construct τ ∈ OU such that H(α − τ) is bounded in terms of Ω, n and
H(∆(f)) we shall use [22, Lemma 6]. The latter says that if a is an integral
OU -ideal and β0 ∈ OU , then there is an α0 ∈ OK such that α0−β0 ∈ OU and
such that H(α0) ≤ dD

1/2
K |a|T . The trace Tr(f) of f ∈ OU [X] is an element in

OU and then an application of [22, Lemma 6] with β0 = Tr(f) and a = nOU
gives η ∈ OK , τ ∈ OU such that η = Tr(f) − nτ and that H(η) ≤ Ω. Thus
n(α−τ) =

∑
δ(α−δ)+η, with the sum taken over the roots δ of f , combined

with (24) leads to
H(α− τ) ≤ Ω3nH(∆(f))1/n.

We now use several times the estimates m ≥ 6, max(1, log(cKcT )) ≤
3(cKcT )1/12 and max(1, log x) ≤ 3x1/3 for x ≥ 1 to simplify the form of the
final bound. Since τ ∗f(X) =

∏
(X − (α − τ)) with the product taken over

the roots α of f , we deduce from the above estimate together with

Ω = exp
(
7κTN

m
T cKcT max(1, log(cKcT ))

)
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an upper bound for h(τ ∗f) as stated in (i).

(ii) An application of [22, Theorem 3] to F gives Γ ∈ SL2(OT ), ε ∈ O×T
and effective absolute constants c6, c7 such that H(ε(Γ∗F )) ≤ Ω, with

log Ω = (4n)−4(c6(d+ t)n)c7dn
8(t+1)2

q2dn8(t+1)2

D
2n8(t+1)
K . (25)

We now construct with ε and Γ an element Φ ∈ SL2(OT ) such that Φ∗F
has bounded height. From [29, Lemma 3] and [35, Theorem 6.5] we deduce
that there exist T -units ε1 and ε2 such that ε = ε1ε

n
2 and such that H(ε1) is

bounded from above by a term not exceeding Ω. If Ψ = ε2Γ and G = Ψ∗F
then we see that G takes the form ε−1

1 ε(Γ∗F ) which implies

H(G) ≤ Ω2.

Furthermore, if g(X) = G(X, 1) then Lemma 2.9 implies that H(∆(G)) =
H(∆(g)) = H(

∏
(ξ − ρ)), where the product is taken over all roots ξ, ρ of

g(X) with ξ 6= ρ and this leads to

H(∆(G)) ≤ 2n(n−1)(4H(G))2(n+1)(n(n−1)).

Observe that Ψ−1 ∈ GL2(OT ), F = (Ψ−1)∗G and that det (Ψ−1)n(n−1) =
∆(F )∆(G)−1. Thus the upper bounds for H(∆(G)) and H(G) give

H(det(Ψ−1)) ≤ Ω3nH(∆(F ))1/(n(n−1)).

An application of [22, Lemma 7] to the transpose of Ψ−1 gives Φ ∈ SL2(OT )
such that the maximum H(Ψ−1Φ) of the multiplicative Weil heights of the
standard coordinates of Ψ−1Φ is at most ΩH(det(Ψ−1))8. Since the pullback
∗ induces a right-action of the group GL2(OT ) on the set of binary forms
defined over K we see that Φ∗F = (Ψ−1Φ)∗G.

In the last step we use elementary height properties of polynomials in
several variables to get an upper bound for H(Φ∗F ) in terms of n, H(G) and
H(Ψ−1Φ). Let H be the exponential of the affine height introduced in [31, p.
225]. We observe that H ≤ H ≤ Hn+1 and for

Ψ−1Φ =

(
α β
γ δ

)
we write Φ∗F (X, Y ) =

∑n
i=0 αi(αX + βY )n−i(γX + δY )i, where αi are the

coefficients of G. Then from [31, Proposition B.7.2] we deduce

H(Φ∗F ) ≤ (n+ 1)
n∏
i=0

H(αi(αX + βY )n−i(γX + δY )i)
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and also that the i-th factor of the product on the right-hand side is at most

23(n+1)H(αi)H(αX + βY )n−iH(γX + δY )i.

The inequalityH ≤ Hn+1 shows thatH(αX+βY )n−iH(γX+δY )i is bounded
from above by H(Ψ−1Φ)n(n+1) and this leads to

H(Φ∗F ) ≤ (n+ 1)(23H(G)H(Ψ−1Φ)n)(n+1)2

.

Therefore statement (ii) follows with k0 = c6c7 from (25) combined with the
above estimates for H(Ψ−1Φ) and H(G). This completes the proof of the
proposition.

For an arbitrary monic and separable f ∈ OT [X] of degree n ≥ 3 we let U
be the smallest set of places of K which contains T and all the prime divisors
of ∆(f). Then we see that the proof of part (i) gives a unipotent translation
ρ(τ) ∈ SL2(OT ) such that

h(τ ∗f) ≤ nh(∆(f)) + (NUD
1/3
K )µ(µ(u+ 1))4µ(u+1),

for u the number of finite places in U and NU defined as NT with U in the
place of T . The quantities u and NU can be bounded effectively in terms of
∆(f) and T such that the resulting bound improves the actual best effective
estimates for monic polynomials with coefficients in OT (see [26] and the
references in [9] and [27]) and makes them completely explicit. For example
we reduced the exponent n2(n!)2d of NU in [26, Theorem 7] to µ ≤ 6n3d.
Moreover, it is shown in [26] that such an estimate for h(τ ∗f) has several ap-
plications in algebraic number theory which now can be stated with sharper
and fully explicit bounds.

We get that k0 is the product of the effectively computable absolute con-
stants c6 and c7 of [22, Theorem 3] and we mention that in course of the
proof of Theorem 2.3 (i) we derive with a similar method an other version of
the first part of the proposition.

2.6 Proofs

For an outline of the principal ideas of the following proof we refer to the
introduction. Let K be a number field with degree d, let DK be the absolute
value of the discriminant of K over Q and let Mfin(α) denote the set of finite
places of Q(α), where α is an algebraic number over Q.
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Proof of Theorem 2.1. We now take a hyperelliptic curve C of genus g ≥ 1
defined over K with good reduction outside a finite set of places S of K as in
the theorem. Lemma 2.4 gives a finite set of places T of K with the properties
that T contains the set S, that the ring of T -integers OT is a principal ideal
domain and that 2 and the residue characteristics of the finite places in T
are in the group of units O×T of OT . We have to compare the number s of
finite places in S, the product NS taken over the finite places v ∈ S of the
number of elements in the residue field of v and the largest rational prime
divisor p of NS with the corresponding quantities t, NT and q for T . Lemma
2.4 gives

t ≤ d(s+ hS) = dσ, NT ≤ (2NSD
(hS−1)/2
K )d and q ≤ max(2, p,D

1/2
K ), (26)

for hS the class number of OS.

To prove statement (i) we assume that C has a K-rational Weierstrass
point. Then an application of Proposition 2.8 (i) to our curve C and the set
T gives a globally T -minimal Weierstrass scheme W(l) of C such that l is
monic of degree 2g + 1 with coefficients in OT and such that the absolute
logarithmic Weil height of ∆(l) ∈ O×T is at most

(50g(t+ d)!)2(2dDK)2dnT .

An application of Proposition 2.10 (i) gives a unipotent translation ρ(τ) ∈
SL2(OT ) such that τ ∗l has coefficients in OT with discriminant ∆(τ ∗l) = ∆(l)
and that

max
(
h(∆(τ ∗l)), h(τ ∗l)

)
≤ 2(µ(t+ 1))4µ(t+1)(NTD

1/3
K )µ, (27)

for µ = 3(2g + 1)(2g)(2g − 1)d = ν/(2d).
In the remaining part of the proof of (i) we show that W(τ ∗l) extends

to a globally T -minimal Weierstrass scheme of C over OK with the desired
properties. To simplify notation we write

n = 2g + 1, η = 1. (28)

Let α be a coefficient of τ ∗l ∈ OT [X]. By Lemma 1.5 we see that the positive
rational integer

δ(α) =
∏

w∈Mfin(α)

max
(
1, |α|w

)
, (29)

is at most H(α)d and satisfies that δ(α)α ∈ OK . The residue characteristic
of a finite place in T is invertible in OT and only the finite places w of Q(α)

42



with ordw(α) ≤ −1 contribute to the right-hand side of (29). Since α ∈ OT
this shows that

ω =
∏

δ(α) ∈ O×T
with the product taken over the coefficients α of τ ∗l and that ω ≤
H(τ ∗l)d(n+1). By construction we get that W(τ ∗l) is a globally T -minimal
Weierstrass scheme of C over OT with discriminant ∆′ ∈ O×T . The equations
U = ω2X, V = ωnY induce an isomorphism between the Weierstrass schemes
W(τ ∗l) andW(f), where the latter is indeed a Weierstrass scheme of C that
arises from

V 2 = f(U) = ω2nτ ∗l(U/ω2) ∈ OK [U ]

with discriminant ∆. Then we see that ∆ ∈ O×T ∩OK and f ∈ OK [U ] satisfy
H(∆) ≤ ω4(g+1−η)(2g+1)H(∆′) and H(f) ≤ ω2nH(τ ∗l) respectively. We now
replace NT and t in (27) by the estimates given in (26) and then we conclude
from the above estimates combined with the upper bound for ω that the
globally T -minimal Weierstrass schemeW(f) of C over OK has the required
properties. This completes the proof of part (i) of Theorem 2.1.

We now prove statement (ii). By assumption the curve C has no K-
rational Weierstrass point. Thus Proposition 2.8 (ii), applied to C and T ,
gives a Weierstrass scheme W(l) of C with discriminant ∆ ∈ O×T such that
l ∈ OT [X] has degree 2g + 2 and that the absolute Weil height of ∆(l) ∈
O×T is effectively bounded in terms of K, T and g. Then an application of
Proposition 2.10 (ii) to the homogenization L ∈ OT [X, Y ] of l gives

Φ =

(
α β
γ δ

)
∈ SL2(OT )

and an effectively computable absolute constant k0 such that

h(Φ∗L) ≤ 2q2n8d(t2+1)2

D
2n8(t+1)
K (n(t+ d))k0n8d(t2+1)2

, (30)

for n = 2g+ 2. Let Φ∗l(X) = Φ∗L(X, 1) and since Φ ∈ SL2(OT ) we get from
Lemma 2.9 that ∆(Φ∗l) = ∆(l).

We next show that W(Φ∗l) is a Weierstrass scheme of C. The group
SL2(OT ) acts on the non-constant rational functions of K(C) by fractional
linear transformations, hence we get a non-constant rational function U =
Φ−1X ∈ K(C). Therefore V = Y (γU + δ)g+1 is non-constant in K(C) and
then we can rewrite the equation Y 2 = l(X) as

V 2

(γU + δ)2g+2
= l(

αU + β

γU + δ
).
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After multiplying both sides of this equation by (γU + δ)2g+2 we obtain

V 2 =

2g+2∑
i=0

αi(αU + β)2g+2−i(γU + δ)i = L(αU + β, γU + δ) = Φ∗l(U)

with αi the coefficients of l. This shows that W(Φ∗l) is indeed a Weierstrass
scheme of C.

Then (30) together with the arguments of the proof of part (i) (where
now n = 2g+ 2, η = 0 in (28) and where now Φ∗l plays the role of τ ∗l) gives
statement (ii). This completes the proof of Theorem 2.1.

We shall use the notation introduced in course of the proof of Theorem
2.1 to prove our second theorem in this chapter.

Proof of Theorem 2.3. Let µ = ν/(2d), let r be the radical of the integer NT

and let ω be the number of rational prime divisors of r. We observe that
t ≤ dω and that explicit versions of the prime number theorem in [56] lead
to ωω ≤ r3. From this we deduce

(µ(t+ 1))4µ(t+1) ≤ (2µ)4µN
5(µd)2/2−µ
T . (31)

A hyperelliptic curve C over K of genus g has good reduction outside its bad
reduction set SC . Therefore the arguments of the proof of Theorem 2.1 give
the statement, where now in (i) we combine (27) with the estimate (31).

It remains to prove Corollary 2.2. Let S be a finite set of places of a
number field K and let hS, s, p, d and DK be the quantities defined in (21).
We denote by NH = NH(K,S, g) the number of K-isomorphism classes of
hyperelliptic curves of genus g defined over K with good reduction outside
S.

Proof of Corollary 2.2. Theorem 2.1 shows that there is an explicit constant
Ω = Ω(K,S, g, k0), for k0 an effectively computable absolute constant, with
the following property. Every hyperelliptic curve C over K of genus g with
good reduction outside S gives a polynomial f ∈ OK [X] of degree at most
2g + 2 with absolute multiplicative Weil height H at most Ω.

If two such curves give the same f , then their function fields are described
by the hyperelliptic equation Y 2 = f(X) and we see that these curves are
K-isomorphic. This implies that NH is bounded from above by the number of
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polynomials f ∈ K[X] with H(f) ≤ Ω. Thus an explicit Northcott theorem
[11, Theorem 1.6.8] yields

NH ≤ (5Ω)10d2g

and then (27) leads to an upper bound for Ω which shows that the estimate
of Corollary 2.2 holds as stated.

The polynomials in K[X] with bounded degree and absolute height can
be determined effectively (for details we refer to the discussions in [11]).
Thus the effective upper bound given in the theorem implies that the K-
isomorphism classes of hyperelliptic curves over K of genus g with good
reduction outside S can be determined effectively. This completes the proof
of Corollary 2.2.
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3 Some applications

3.1 Introduction

In this section we first generalize Szpiro’s Discriminant Conjecture to arbi-
trary hyperelliptic curves C over a number field K. Then we prove an ex-
ponential version of this conjecture and we deduce an effective upper bound
for the Arakelov degree of an elliptic curve over K in terms of its conductor.
Further, if C is elliptic or has genus 2, then we derive an effective estimate
for the geometric discriminant of C in terms of the conductor. We get the
same estimate also for the number of singular points on the geometric special
fibers of the minimal regular model of C over the ring of integers in K.

Next we introduce quasi-minimal Weierstrass schemes of an arbitrary hy-
perelliptic curve C over a number field K which has a K-rational Weierstrass
point. Then we generalize the Height Conjecture of Frey for elliptic curves
to the more general curves C and we prove an effective exponential version
of this conjecture. From this we deduce new results for modular Jacobians.

3.2 On Szpiro’s Discriminant Conjecture

Let C be a hyperelliptic curve of genus g ≥ 1 defined over a number field K.
We denote by OK the ring of integers of K. For a closed point p ∈ Spec(OK)
we denote by Wp a minimal Weierstrass scheme of C over the local ring Op

at p and we denote by ∆p its minimal discriminant (defined in chapter 2).
The positive integer np = ordp∆p is independent of the choice of Wp and
then we define the minimal discriminant ideal of C as DC =

∏
pnp with the

product taken over all closed points p ∈ Spec(OK). Let

∆C = NK/Q(DC) (32)

and letNC be the conductor of C (defined in (19)). We now generalize Szpiro’s
Discriminant Conjecture [71, Conjecture 1] to arbitrary hyperelliptic curves
over K.

Conjecture 3.1. There exist constants c, κ, depending only on K and g ≥ 1,
such that if C is a hyperelliptic curve defined over K of genus g, then

∆C ≤ cNκ
C .

We give some motivation for this conjecture. For hyperelliptic curves with
a K-rational Weierstrass point Lockhart stated in [39] an even stronger con-
jecture and he showed in [39, Proposition 4.3] that the abc-Conjecture of
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Masser and Oesterlé for number fields [41] implies Conjecture 3.1 for a spe-
cial class of hyperelliptic curves over K. Furthermore, Nguyen [48] proved a
complex function field analogue of Conjecture 3.1 for hyperelliptic fibrations.
The following result gives an effective exponential version of Conjecture 3.1.

Theorem 3.2. There exist effective constants c1, κ1, depending only on K
and g ≥ 1, such that if C is a hyperelliptic curve defined over K of genus g
with a K-rational Weierstrass point, then

log ∆C ≤ c1N
κ1
C .

If C has no K-rational Weierstrass point, then we still get an effective
estimate for log ∆C in terms of K, g and NC . We omit to work out explicitly
this estimate since it would be exponential in terms of NC .

Let d be the degree of K over Q, let DK be the absolute value of the field
discriminant of K over Q and let hK be the class number of K. In the above
theorem we can take for example

κ1 = ν2 = (6(2g + 1)(2g)(2g − 1)d2)2, c1 = (2dD
hK/2
K )κ1 . (33)

The dependence of these constants on the terms d, DK , hK and g can be
sharpened to a certain extent (see the discussion in chapter 2). But to get
rid of the logarithm in the above theorem our method needs at least bounds
for linear forms in logarithms which are equivalent (see Baker [6]) to the
abc-Conjecture for Q.

We mention that for elliptic curves over Q the abc-Conjecture implies
Szpiro’s Discriminant Conjecture and that Stewart and Yu [69, Theorem 1]
proved an exponential version of the abc-Conjecture for Q. It seems (see the
standard links in [49] and the references there) that these results can not be
combined to cover our theorem in the case of elliptic curves over Q. On the
other hand, the arguments in [49] together with our theorem give a version
of the abc-Conjecture for number fields that is essentially of the same shape
as the main results in [69], [28].

Proof of Theorem 3.2. We take a hyperelliptic curve C of genus g ≥ 1 defined
over K of conductor NC as in the theorem. An application of Theorem 2.3
to C gives a Weierstrass schemeW of C over OK with discriminant ∆ ∈ OK
such that h(∆) is bounded effectively in terms of NC , g and K. We assume
that a closed point p ∈ Spec(OK) divides DC with an exponent np. The
scheme W arises from a hyperelliptic equation for C defined over OK ⊂ Op

and then the minimality property of DC shows np ≤ ordp(∆). Thus we see
that ∆C ≤ NK/Q(∆) which implies

log ∆C ≤ h(∆).
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Hence the estimate of Theorem 2.3 for h(∆) leads to the upper bound for
∆C as stated. This completes the proof of Theorem 3.2.

For elliptic curves over K we now give an interpretation of our theorem
in terms of Arakelov geometry.

Corollary 3.3. The Arakelov degree of the direct image of the relative dual-
izing sheaf of a minimal regular model over Spec(OK) with generic fiber an
elliptic curve E over K is at most

(2dDhK
K )(6d)4

N
(6d)4

E .

Proof. Let degAr(ωE) be the Arakelov degree of the direct image of the
relative dualizing sheaf of a minimal regular model over Spec(OK) with
generic fiber an elliptic curve E over K. If E has semi-stable reduction over
Spec(OK), then a result of Szpiro [72, Theorem] gives

12degAr(ωE) = log ∆E.

Furthermore, the arguments of Ullmo (see [73, p. 1049]) show that this equal-
ity holds also in the non-semistable case. Therefore Theorem 3.2 implies the
statement.

The definition of the minimal discriminant ideal of a hyperelliptic curve
is intrinsic but unnatural in the sense that a generalization to an arbitrary
smooth, projective and geometrically connected curve X of genus g ≥ 1
over K fails. Following Deligne [19], we now define a discriminant also for
these more general curves X. Let X be a minimal regular model of X over
Spec(OK), let p be a closed point in Spec(OK), and let S = Spec(Op). The
morphism ρ : X ×OK

S → S, obtained by base change to S, gives a minimal
regular model of X over S and a result of Mumford [47, Theorem 5.10]
provides an isomorphism

detRρ∗(ω
⊗2
X/S)⊗K → (detRρ∗ωX/S)⊗13 ⊗K,

for ωX/S the relative dualizing sheaf of X over S. This isomorphism gives a
canonical non-zero rational section δ of the invertible OS-module

L = (detRρ∗ωX/S)⊗13 ⊗ detRρ∗(ω
⊗2
X/S)⊗−1.

Then the normalized valuation δp of δ, defined by OS · δ = pδpL, and the
number of irreducible components mp of the geometric special fiber of ρ are
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independent of the choice of X . Since only finitely many fibers of X are not
smooth, we can define

δX =
∏

NK/Q(p)δp , mX =
∑

(mp − 1)

with product and sum taken over the closed points of Spec(OK). The positive
rational integers δX and mX are invariants of X.

We now can state our corollary. It is a consequence of Theorem 3.2 and
results of Bloch, Liu, Ogg and Saito.

Corollary 3.4. Suppose C is a smooth, projective and geometrically con-
nected curve over K of genus 1 ≤ g ≤ 2. If C has a K-rational Weierstrass
point, then log δC and mC are at most c1N

κ1
C .

If C is hyperelliptic over K of genus g ≤ 2 and has no K-rational Weier-
strass point, then we get an effective estimate for log δC and mC which is
exponential in the conductor NC .

It seems possible to derive from Theorem 3.2 similar results also for ar-
bitrary hyperelliptic curves C with genus g ≥ 3 over K. The strategy is as
follows. For the discriminant Λp of C introduced by Kausz [33] one can show
that Λp ≤ np (see the proof of [37, Proposition 2 (d)]). Hence it suffices to
estimate δp effectively in terms of Λp. A result of Maugeais [45] implies for
curves C with stable reduction over Spec(OK) that δp ≤ Λp which then leads
to log δC ≤ c1N

κ1
C . But the general case remains an interesting project.

Conjecture 3.1 implies that the invariants mp, δp of the curves C in the
above corollary are bounded only in terms of K.

For our proof of Corollary 3.4 we need to introduce some further notation.
We fix an algebraic closure K of K. Let p be a closed point in Spec(OK) with
residue field k and we write S = Spec(Op). We denote by XK and Xk the
geometric generic and geometric special fiber of ρ : X → S respectively.
Following Saito, we define

Artp(X) = χ(XK)− χ(Xk)− δ,

where χ is the Euler characteristic for the étale topology and where δ is the
Swan conductor associated to a l-adic representation (defined in ([58])). For
brevity we shall write Artp = Artp(X).

Proof of Corollary 3.4. Let p be an arbitrary closed point in Spec(OK) with
residue field k.

We first suppose that C has genus one. By assumption C has a K-rational
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point O and then we write E for the elliptic curve (C,O) over K. Observe
that any two K-rational points of E are related by a K-isomorphism (a
translation) of C. Hence our definition of np coincides with the order of p

in the usual minimal discriminant ideal of an elliptic curve and then Saito’s
results [57, Corollary 2] and [57, Theorem 1] state

np = −Artp and δp = −Artp

respectively. We take m = 1 in Bloch’s result [10, Lemma 1.2 (i)] (see also
Ogg’s formula [50]) which gives

− Artp = mp + fp − 1, (34)

and then Theorem 3.2 gives the desired upper bound for mE and δE.
For the second part we now assume that C has genus 2. To apply results

of Liu [36] and Saito [57] we work over the strict henselisation O of Op. If
S ′ = Spec(O), then ρ′ : X ×S S ′ → S ′ gives a minimal regular model of
C ′ = C ×K L over S ′, for L ⊃ K the field of fractions of O ⊃ Op. Let
∆min and ∆′min be the minimal discriminants at p of C and C ′ respectively,
introduced by Liu in [36, Definition 1], and let Art′p and δ′p be the Artin
conductor and the discriminant of C ′ respectively. Then we get

Artp = Art′p, δ′p = δp (35)

and we observe that the residue field of the henselian ring O is algebraically
closed. Hence over O we can use [36, Theorème 1] and [36, Theorème 2]. The
former result shows that −Art′p ≤ ordp∆

′
min and the latter result gives that

ordpDC′ = ordp∆
′
min + 10

(
ordp∆

′
min + Art′p

)
. This leads to

−Art′p ≤ ordpDC′ .

Saito [57, Theorem 1] gives −Art′p = δ′p which together with (35) implies that
−Artp = δp. Then the above estimate for −Art′p combined with (35) shows

δp = −Art′p ≤ ordpDC′ = ordpDC .

As in (34) we get −Artp = mp + fp − 1. We conclude the inequalities mp ≤
δp + 1 ≤ ordpDC + 1 and then the stated estimate for log δC and mC follows
from Theorem 3.2. This completes the proof of Corollary 3.4.
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3.3 On the Height Conjecture

Let C be a hyperelliptic curve of genus g ≥ 1 over a number field K. In this
section we shall always assume that C has a K-rational Weierstrass point
P (see the discussions after Theorem 3.6). To simplify the notation we shall
write C for the pair (C,P ) and then also DC for D(C,P ), where the latter is
the minimal discriminant of (C,P ) defined in [39].

To state our results we now define quasi-minimal Weierstrass schemes
of C over the ring of integers OK of K. When OK is not a principal ideal
domain these schemes substitute the globally minimal Weierstrass schemes of
C overOK (defined in chapter 2). They provide a link between arithmetic and
geometric properties of hyperelliptic curves (see the applications discussed in
chapter 0). Our curve C has a Weierstrass equation

Y 2 + k(X)Y = f(X), (36)

where f ∈ OK [X] is monic of degree 2g + 1 and where k ∈ OK [X] has
degree at most g. Let W(f, k) be a Weierstrass scheme of C, arising from
a Weierstrass equation (36), with discriminant ∆. We say that W(f, k) is a
quasi-minimal Weierstrass scheme of C over OK if NK/Q(∆) is minimal when
taken over all discriminants of Weierstrass equations (36) for C. The curve
C has always a quasi-minimal Weierstrass scheme over OK and a globally
minimal Weierstrass scheme of C over OK is, a forteriori, quasi-minimal over
OK .

As in chapter 2 we denote by h(W(f, k)) the height of W(f, k) and by
NC the conductor of C.

Conjecture 3.5. There are constants c, κ, depending only on K and g ≥ 1,
with the following property. If C is a hyperelliptic curve defined over K of
genus g with a K-rational Weierstrass point, then there is a quasi-minimal
Weierstrass scheme W(f, k) of C over OK with

H(W(f, k)) ≤ cNκ
C .

From [63] we see that this conjecture generalizes Conjecture 0.2 to hyper-
elliptic curves C over K with a K-rational Weierstrass point. A motivation
for this conjecture is the next theorem which gives an effective exponential
version. Furthermore, for elliptic curves Frey proved in [25] a function field
version of this conjecture. Let c1, κ1 be the explicit constants given in (33).
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Theorem 3.6. Suppose C is a hyperelliptic curve over K of genus g ≥ 1 with
a K-rational Weierstrass point. Then there is a quasi-minimal Weierstrass
scheme W(f, k) of C over OK with

h(W(f, k)) ≤ c1N
κ1
C .

Our method combined with a modification of Lemma 3.7 gives also an
effective estimate in terms of K, g and NC for quasi-minimal Weierstrass
schemes of hyperelliptic curves without a K-rational Weierstrass point. These
modifications are only of technical nature but the resulting bounds are so big
that the technical effort will not be worth it.

We briefly discuss how our theorem leads to an effective upper bound, of
the same shape as in the theorem, for the absolute Faltings height habs of the
Jacobian over K of an arbitrary hyperelliptic C over K. The crucial point is
that habs is stable under finite field extensions and that the field of definition
L = K(P ) of one of the 2g + 2 Weierstrass points P of C can be controlled
effectively in terms of g, K and NC . Hence we can apply our theorem to
the hyperelliptic curve C ×K Spec(L) which has a L-rational Weierstrass
point and then by results of Bost-David we can compare effectively habs with
h(W(f, k)) (see [17]). In particular this gives an effective upper bound, of the
shape as in the theorem, for the relative Faltings height hrel of the Jacobians
over K of semi-stable hyperelliptic curves over K.

The arguments of the last section indicate that the exponential versions
of the abc-Conjecture of Stewart-Yu and Győry do not imply directly our
theorem in the elliptic case.

Before we go into the proof of Theorem 3.6 we expose briefly the principal
ideas. A lemma together with Theorem 3.2 gives a Weierstrass schemeW(f0)
of C over OK with discriminant ∆0 such that h(∆0) ≤ c1N

κ1
C . Proposition

2.10 then gives a unipotent translation ρ(τ) ∈ SL2(OK) such that W(τ ∗f0)
has height bounded as stated. Finally we show that τ ∗f0 takes the form
f + k2/4, for W(f, k) a quasi-minimal Weierstrass scheme of C over OK .

Proof of Theorem 3.6. We start with the following lemma which allows to
control the discriminant of quasi-minimal Weierstrass schemes.

Lemma 3.7. If W(f, k) is a quasi-minimal Weierstrass scheme of C over

OK with discriminant ∆, then NK/Q(∆) ≤ D
2g(2g+1)
K ∆C.

Proof. From [34, Theorem 4, p. 119] we get an integral ideal a in the Weier-

strass class of C (defined in [39, p. 737]) with NK/Q(a) ≤ D
1/2
K . Then [39,
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Proposition 2.8] gives a Weierstrass scheme of C with discriminant ∆′, arising
from a Weierstrass equation (36) of C, such that

∆′OK = a4g(2g+1)DC . (37)

Since W(f, k) is a quasi-minimal Weierstrass scheme of C over OK , we get
NK/Q(∆) ≤ NK/Q(∆′). Then the above equality of ideals together with the
upper bound for the norm of a leads to

NK/Q(∆) ≤ D
2g(2g+1)
K ∆C ,

which completes the proof of the lemma.

Let W(l,m) be a quasi-minimal Weierstrass scheme of C over OK with
discriminant ∆′. From [22, Lemma 10] we get ε ∈ O×K such that

h(ε4g(2g+1)∆′) ≤ logNK/Q(∆′) + 12g2(6d3)dRK . (38)

We now consider the Weierstrass scheme W(f0) of C over OK with discrim-
inant ∆0 = (2ε)4g(2g+1)∆′, where

f0(X) = (2ε)4g+2
(
l(
X

4ε2
)− 1

4
m(

X

4ε2
)2
)
.

Lemma 3.7 gives NK/Q(∆′) ≤ D
2g(2g+1)
K ∆C and then Theorem 3.2 together

with (38) implies

h(∆0) ≤ 1

2(2g + 1)
c1N

κ1
C ,

where we obtained the factor 1
2(2g+1)

on using in (38) an upper bound for RK

in terms of d and DK (see [35]) and on calculating the constants in Theorem
2.3 and Theorem 3.2 more precisely.

Let NT =
∏
NK/Q(p) with the product taken over the prime ideals p

which divide ∆0. The integers ∆0 and 24g(2g+1)∆′ coincide up to unit in OK ,
therefore (37) shows NT ≤ 2dD

1/2
K NC . Thus an application of Proposition

2.10 (i) gives a unipotent translation ρ(τ) ∈ SL2(OK) such that

h(τ ∗f0) ≤ 1

2
c1N

κ1
C + nh(∆(f0)).

We define f(X) = ε4g+2l(ε−2X + τ) and k(X) = ε4g+2m(ε−2X + τ) and then
we see from the above estimates for h(∆0) and h(τ ∗f0) that the quasi-minimal
Weierstrass scheme W(f, k) of C over OK has the desired properties. This
completes the proof of Theorem 3.6.
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We next deduce some consequences for modular Jacobians. Let N ≥ 1
be an integer and let X0(N) be the projective modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of
order N . We denote by J0(N) → Spec(Q) the Jacobian variety of X0(N).
Let hrel(E) denote the relative Faltings height of an elliptic curve E over Q.

Corollary 3.8. If E is an elliptic Q-factor of J0(N), then

hrel(E) ≤ (2N)64

.

This makes the quantitative result of Brumer and Silverman [12] com-
pletely effective and it shows in particular that the elliptic Q-factors of J0(N)
can be determined effectively. We note that Conjecture 3.5 gives the above
statement without the logarithm and that the abc-Conjecture [41] gives for
all ε > 0 a constant C(ε), which depends only on ε, such that

exp(hrel(E)) ≤ C(ε)N1/2+ε.

Proof of Corollary 3.8. Deligne and Rapoport constructed explicitly in [20] a
minimal regular model of X0(N) which is smooth over Spec(Z[1/N ]). Hence
X0(N) has good reduction at all the rational primes not dividing N . Then
J0(N) is the generic fiber of an abelian scheme J which is smooth over
Spec(Z[1/N ]) (see Milne [46, Corollary 12.3]). Therefore the minimal regular
model of an elliptic factor E of J0(N) is smooth over Spec(Z[1/N ]). This
implies that the conductor NE of E is at most N and then the upper bound
given in Theorem 3.6 together with an explicit version of a comparison result
in [63] leads to the desired estimate. This concludes the proof of Corollary
3.8.
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[52] A. N. Paršin, Minimal models of curves of genus 2, and homomorphisms
of abelian varieties defined over a field of finite characteristic, Izv. Akad.
Nauk SSSR Ser. Mat. 36 (1972), 67–109.

58



[53] D. Poulakis, The number of solutions of the Mordell equation, Acta
Arith. 88 (1999), no. 2, 173–179.

[54] , Corrigendum to the paper: “The number of solutions of the
Mordell equation” [Acta. Arith. 88 (1999), no. 2, 173–179], Acta Arith.
92 (2000), no. 4, 387–388.

[55] M. Raynaud, Hauteurs et isogénies, Astérisque (1985), no. 127, 199–234,
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